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D. Ángel Mart́ın Pendás, Catedrático de Qúımica F́ısica del Departamento de
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Abstract

The modern Theory of Chemical Bonding may be well understood as the study of
reduced density matrices (RDMs) in real space regions to get new insights of the chemical
bond. Although, much work has been widely used to understand chemical bonding
from one-electron density, include correlation effects requires the access to higher order
densities. Based on the cumulant expansion of the RDMs, a set of bonding indices
which may decomposed into one-electron component may be defined. Each component
is partnered with a one-electron function(natural adaptive orbital, NAdO). Additionally
to correlation effects, the renewed interest on long-range interactions, has moved chemists
to developed new tools for understanding these interaction. NCI analysis has been arose
as one of the most accepted index for exploring noncovalent interactions. Recently, it
was shown that ionic interactions may be grasp by NCI index, but not much work has
been carried out to understand the behavior of NCI in covalent bonds. In the present
work, a comparative NAdOs and NCI analysis of the a set of small molecules has been
carried out. As example of long range interaction, we examined the validity of the NCI
index to analysis the bonding in a self assembly monolayer (SAM) of octylamine.

12



Contents

1 Methods of Quantum Mechanics 17
1.1 The Hartree-Fock aproximation . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Configurations Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 CI matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Correlation energy . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Multiconfigurational Methods . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 First Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . 22
1.4.2 Second Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . 23

1.5 Density matrices and Related Functions . . . . . . . . . . . . . . . . . . 25
1.5.1 The Electron Distribution . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Reduced Density Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.1 Cumulants from n-RDMs . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.2 nCDMs at single determinant level . . . . . . . . . . . . . . . . . 28
1.6.3 Pair density and electron correlation . . . . . . . . . . . . . . . . 29

2 Topology 31
2.1 The Gradient Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Topology of the charge density . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Quantum Theory of Atoms in Molecule . . . . . . . . . . . . . . . . . . . 34

2.3.1 Atomic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Chemical bonding in real space 39
3.1 Pair density and electron localization . . . . . . . . . . . . . . . . . . . . 39
3.2 Generalized population analysis . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Reduced Density Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Shell structure as described by s . . . . . . . . . . . . . . . . . . . 45
3.3.2 Revealing NonCovalent Interactions . . . . . . . . . . . . . . . . . 47

4 Results 51
4.1 Examples and Computational Details . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Illustrative Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusiones 67

6 Appendix 69

13





Introduction

Many of our chemical and physical understanding of the structure and properties of the
matter are based on the idea that their elemental parts remain invariant. The predictive
character of matter science, is a consequence of the invariance and the transferability of
the properties of atoms and ions forming the matter. Turning to quantum mechanics, the
system is treated as a whole, being not possible to recover the basic chemical concepts.

Valence Bond and Molecular Orbital theories were the first attempts to overcome
this hitch. Many of the concepts introduced in these old days, such as atomic charges,
covalency, ionicity, resonance,etc have been firmly rooted in the chemistry parlance.
Although both theories were widely accepted (at the beginning the MO theory was
more fortunate than VB), it was found that many of the concepts defined by them, are
highly dependent on the accuracy of the wave function.

John Coleman [1] in the 60’s claimed to replace wave function role by reduce density
matrices (RDMs), but were the formulation of the Density Functional Theory (DFT) by
Hohenberg and Kohn [2] and the development of Quantum Theory of Atoms in Molecules
(QTAIM) by R.F.W. Bader [3],the keys to convince the community to leave the wave
function analysis based on a orbital space, and focus on the RDMs.

Fixed, RDMs as the key functions, a real space partition is needed to recover chemical
concepts. Daudel and co-workers[4] were the first who explore how to split real space.
They were looking for the “best” decomposition of physical space into mutually exclusive
regions called “lodges”. The partition proposed by Daudel and the subsequently work
of Bader and co-workers set the basis of what Paul L. A. Popelier has defined as the
Quantum Chemical Topology (QCT)[5]. The topological approaches encompass all the
real space partitions based on the topology of any chemically meaningful scalar function,
constructed from the RDM. It thus provides provides quantities that are invariant under
orbital transformations. These last property, makes any index defined in the QCT
almost independent of the theoretical framework use to obtain the wave function. The
electron density, the electron. localization function (ELF)[6], the molecular electrostatic
potential (MEP), are some of the most employed functions in QCT to divide the real
space. Classical chemical concepts emerge from the topology of any of the above scalar
fields. Atom in molecules, appear from the topology the electron density, the electron
pairing envisioned by Lewis is recovered by the ELF and ELI-D[7], nucelophilic and
electrophilic regions are easily identified by MEP and so on [8].

Applying all this scalar fields to build bonding models, take us to the theory of chemical
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bonding. Particularly interesting in this field is the Fermi hole defined by Lennard-
Jones [9], many years after used by Bader and Stephens [10] as a measure of the Fermi
correlation, and recovered by R. Ponec, defining the domain averaged Fermi hole (DAFH)
analysis [11],[12]. The success of DAFH analysis to chemical bonding , convince other
authors to generalized Fermi whole analysis. E. Francisco and co-workers generalized the
DAFH analysis by means of the RDM, in particular, by their cumulants, recovering bond
orders and the one-electron bonding picture from a set of functions knows as Natural
Adaptive Orbitals (NAdOs) [13].

Despite the success of the topological approach to tackle with covalent and ionic
bonding, identified weak dispersion interactions require some new scalar field. The
reduced density gradient has been found to identified successfully strong interactions
already found by other fields, ant also the weak dispersion interactions, being the kernel
of the so well accepted NCI (non-covalent interactions ) method. The properties of
s(r) and the curvatures of the the ρ(r), are combined not only to identified any kind of
interactions, but to differentiate between them.

In this exploratory work, we performed a deep bonding analysis, covering all kind
of interactions. A comparative NAdOs and NCI analysis were performed to the di-
atomic homonuclear molecules A2(A=H,He,Li,Be,B,C,N,,O,F,Ne) and the heteronuclear
molecules LiH and H2O. As example of weak dispersive interaction, we choosen to dif-
ferent arrangements of octylamine in gas phase.

The structure of the present work is as follows: in Chapter 1 we reviewed the thoretical
methods employed to obtained the wave function. In Chapter 2 we introduced the
RDM formalism. Chapter 3 is devoted to the topological approaches and in particular
to the QTAIM. In the Chapter 4 we present the NAdOs and the NCI analysis as a
tool to analyse chemical bonding. Chapter 5 we apply both methods to the systems
aforementioned. We finalize the manuscript gathering a number of conclusions in the
Chapter 6.
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1 Methods of Quantum Mechanics

Any problem in electronic structure of matter is covered by the Schrödinger equation

i~
dΨ

dt
= ĤΨ, (1.1)

where Ψ is the wave function of the system and Ĥ the hamiltonian operator. For con-
servative or stationary systems, where the potential energy part of the Hamiltonian is
not a function of time, a possible solution of Eq. 1.1 is

Ψ = ψe−iEt/~, (1.2)

with
Ĥψ = Eψ (1.3)

where E is the energy of the system, ψ = ψ(x1, x2, ...xN) is the N -particle time indepen-
dent wave function, xi = riσi, and r and σ are spatial and spin coordinates, respectively.
In atomic units, the Hamiltonian for a molecule formed by N electrons and M nuclei is
given by

Ĥ = −1

2

M∑
A=1

∇2
A −

1

2

N∑
i

∇2
i +

∑
i>j

1

rij

−
∑
A,i

ZA

|ri − RA|
+
∑
A>B

ZAZB

|RA − RB|
, (1.4)

where the indices A,B and i, j designate nuclei and electrons respectively, ZA is the
nuclear charge of atom A, and ∇2

i and ∇2
A are the electron and nuclear laplacians,

respectively. Under the Born-Oppenheimer approximation the nuclei are considered to
have fixed positions, so that the last term is Eq. 1.4 is a constant and the kinetic energy
of the nuclei (first term of Eq. 1.4) can be neglected. The remaining terms are called
the electronic Hamiltonian.

Ĥelec = −1

2

N∑
i

∇2
i +

∑
i>j

1

rij

−
∑
A,i

ZA

|ri − RA|
. (1.5)

Similarly to Eq. 1.3, the eigenvalue problem involving Ĥelec is

ĤelecΨelec = EelecΨelec, (1.6)

and leads to the electron wave function Ψelec and the electron energy Eelec. Both depend
parametrically on the nuclear positions. The total energy of any arrangement of the
nuclei is built by adding the repulsion energy between the nuclei to Eelec .

Etotal = Eelec +
∑
A>B

ZAZB

|RA − RB|
(1.7)
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In what follows, we will focus on how to solve the electronic problem, Eq.1.6. On refering
to Ĥelec and Ψelec, we will drop the subscript elec.

1.1 The Hartree-Fock aproximation

The Hartree-Fock (HF) approximation is the simplest approach to solve Eq.1.6. This
method supposes that the electronic wave function Ψ is given by an antisymmetrized
product of N spinorbitals, φi(x), known as Slater determinant

ΨHF =
1√
N!

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
...

...
...

φ1(xN) φ2(xN) . . . φN(xN)

∣∣∣∣∣∣∣∣∣ (1.8)

The determinantal form of ΨHF ensures that the Pauli principle is satisfied. The HF
approximation is a variational method which searchs for that set of orthonomalized spin
orbitals which minimizes the electronic energy of the system. The expectation value of
the energy is given by

EHF = 〈ΨHF|Ĥ|ΨHF〉 =
∑

i

hi +
1

2

∑
i

∑
j

(Jij −Kij), (1.9)

where

hi =

∫
φ∗i (x)

[
−1

2
∇2

i −
M∑

A=1

ZA

|ri − RA|

]
φi(x)dx (1.10)

Jij =

∫ ∫
φi(x1)φ∗i (x1)

1

r12

φj(x2)φ∗j (x2)dx1dx2 (1.11)

Kij =

∫ ∫
φi(x1)φ∗i (x2)

1

r12

φj(x2)φ∗j (x1)dx1dx2. (1.12)

The integrals Jij and Kij are called Coulomb and Exchange integrals respectively. The
minimization of EHF under the orthonormalization condition of the spin-orbitals, 〈φi|φj〉 =
δij leads to the Hartree-Fock differential equations

f̂iφi(x) =
∑

j

εijφj(x), (1.13)

where f̂ is the Fock operator

f̂i = ĥi +
∑
j6=i

[ĵj − k̂j]. (1.14)

In Eq. 1.14, ĥi is a monoelectronic hamiltonian, describing the kinetic and potential
energy of one electron in the field of the nuclei

ĥi = −1

2
∇2

i −
∑

A

ZA

|ri − RA|
,. (1.15)
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ĵ is a local operator known as coulomb operator

ĵk(x1)φi(x1) =

∫
[φ∗k(x2)

1

r12

φk(x2)]dx2φi(x1) (1.16)

and k̂ is a non-local operator knows as exchange operator

k̂k(x1)φi(x1) =

∫
[φ∗k(x2)

1

r12

φi(x2)]dx2φk(x1). (1.17)

It is possible to take advantage of the invariance of the determinants and the Fock
operator under unitary transformations of the orbitals and transform Eq. 1.13 into an
eigenvalue equation of the form 1.3. First, Eq. 1.14 may be written in the matrix form

fφ = εφ. (1.18)

Now, since ε is a Hermitian matrix, it may be diagonalized by a unitary matrix U.
Defining a new set of orbitals, φ̄ = φU, Eq. 1.13 may be written as fφ̄ = ε̄φ̄, being
ε̄ diagonal. After this unitary approximation, we drop the bar and each spin-orbital
satisfies:

fiφi = εiφi (1.19)

These equations are known as the canonical Hartee-Fock equations and {φi} are called
the canonical Hartree-Fock orbitals with orbital energies {εi}. Under the canonical
formulation, it is clear that the HF method is an independent-particle model, in the
sense each spin orbital is an eigenfunction of an effective one-electron operator (̂fi).
The electron interactions are only taken into account in an averaged form, i.e. each
electron does not feel the instantaneous field generated by the remaining N-1 electrons
of the system, but an averaged field given by the coulomb and exchange operators. The
Hartree-Fock energy may be recovered from the orbital energies as

EHF =
∑

i

εi −
1

2

N∑
i,j

Jij −Kij. (1.20)

The second term disccounts the electronic repulsion energy that is counted twice in∑
i εi.
The HF equations must be solved by an iterative procedure known as self consisted

field (SCF) method. The Fock operator depends on the spin-orbitals, but these functions
are the solutions of the problem. Consequently, an initial guess for these spin-orbitals
is needed. Then, the f̂ operator and the spin-orbitals are iteratively updated until the
convergence in the εi and φi is reached.

1.2 Configurations Interaction

Despite the elegance and simplicity of the Hartree-Fock approximation, it does not take
into account a fundamental property: the electron correlation. Although the electron
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correlation supposes a little amount of the total energy of the system, it is essential
for an accurate description of the electronic structure. The correlation energy (Ecorr) is
defined as the difference between the exact non-relativistic energy of the system and the
Hartree-Fock energy:

Ecorr = E− EHF. (1.21)

The Configuration Interactions (CI) method is the next step for improving the elec-
tronic structure description. The wave function is expanded in terms of a set of Slater
determinants(Di)

Ψo =
∑

i

CiDi (1.22)

Di =
1√
N!
|φi1(x1) . . . φiN(xN)| (1.23)

where {φ} is a set of M spin orbitals, φi1 , φi2 ,. . . ,φiN is the subset of N < M spin orbitals
used to construct the determinant Di, and Ci are coefficients obtained variationally by
minimizing the total energy Eo = 〈Ψo|H|Ψo〉. When all possible independent combina-
tions of determinants are included in the expansion 1.22 the method is called full CI and
it is the exact solution for a given basis set {φ}. However, this limit is computationally
very demanding, being only possible to perform full CI calculations for relatively small
systems. The CI expansion is usually truncated at a given excitation level, giving a
hierarchy of methods: CIS (includes all single excitations), CISD (includes all single and
double excitations),... The CISD is the most usual truncation, since single and doubly
excitations are the most important to lowering the ground state energy.

1.2.1 CI matrix

The CI energy is obtained by diagonalizing the matrix of the electronic Hamiltonian in
the basis of the Slater determinants. To show the structure of this CI matrix, we express
Ψo in a symbolic form

|Ψo〉 = co|Φo〉+ cS|S〉+ cD|D〉+ cT|T〉+ . . . , (1.24)

where |Φo〉 is the Hartree-Fock wavefunction, |S〉 is the set of single excitations, |D〉 the
set of double excitations and so on. The Brillouin’s theorem and the Slater rules simplify
the structure of the CI matrix.

Brillouin’s Theorem. Singly excited determinants will not interact directly with a ref-
erence Hartree-Fock determinant.

This theorem cancels all the elements 〈Φo|H|S〉. The Slater rules cancel all that matrix
elements which couple two determinants that differ in more than two spin orbitals,
i.e.,〈Φo|H|T〉, 〈S|H|Q〉, . . .. The CI matrix takes then a block structure

〈Φo|H|Φo〉 0 〈Φo|H|D〉 0 0 . . .
0 〈S|H|S〉 〈S|H|D〉 〈S|H|T 〉 0 . . .

〈D|H|Φo〉 〈D|H|S〉 〈D|H|D〉 〈D|H|T 〉 〈D|H|Q〉 . . .
...

...
...

...
... . . .
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1.2.2 Correlation energy

The correlation energy Ecorr was defined in Eq. 1.21. In this section, we will show how
to recover it at the full CI for the ground state of a molecular system. First, we write
again Eq. 1.24 in more detail.

|Ψo〉 = |Φo〉+
∑

ar

cr
a|Φr

a〉+
∑

a<b,r<s

crs
ab|Φrs

ab〉+ . . . (1.25)

where |Φr
a〉 means a determinant created replacing the spin orbital r by the spin orbital

a in |Ψo〉, |Φrs
ab〉 a determinant created replacing the spin orbitals r and s by the spin

orbitals a and b, respectively, and so on. Now, we impose an intermediate normalization
condition

〈Ψo|Φo〉 = 1. (1.26)

The greater the contribution of the HF configuration to |Ψo〉, the more exact the HF
approximation is. Similarly to the HF case, the ground state energy Eo is the solution
of the equation:

H|Ψo〉 = Eo|Ψo〉. (1.27)

Applying the correlation energy definition (Eq. 1.21 ), and multiplying both sides of the
above equation by 〈Φo| we have

〈Φo|H− EHF|Ψo〉 = 〈Φo|Eo − EHF|Ψo〉 = Ecorr (1.28)

where the intermediate condition was used. Combining the Brioullin’s theorem and the
Slater rules, Ecorr becomes:

Ecorr =
∑

a<b,r<s

crs
ab〈Ψo|H|Ψrs

ab〉. (1.29)

With the intermediate normalization condition, the correlation energy is solely deter-
mined by the double excitations. The single excitations only contribute indirectly by
coupling with the double excitations. Although third and higher excitations are also
coupled, their weights in the CI wave function are much lower. That is why single and
double truncation are the most employed.

1.3 Multiconfigurational Methods

CI calculations use canonical Hartree-Fock orbitals to construct configurations. Since
virtual orbitals do not contribute to the HF energy, they are not optimized at this level
of calculation. The philosophy of multiconfigurational methods (MCSCF) is to find the
best choice for all the orbitals. In this approximation, the wave function is expanded in
terms of a set of configurations, {|Ψi〉},

|ΨMCSCF〉 =
∑

i

Ci|Ψi〉, (1.30)
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and, unlike the CI method, in which only Ci coefficients are optimized, in the MCSCF
procedure both, the Ci and the orbitals that define the |Ψi〉i are optimized. This make
the process much computationally demanding, limiting the number of configuration to
be included in the calculation.The choice of the configurations depends on the chemistry
of the problem. There isn’t any ”general recipe”to select the configurations.

The cost of MCSCF may be reduced by restring not only the orbitals to be included
in each configuration, but the number of electrons to be excited from HF configuration.
That is, the orbitals are split in two sets. One set, called frozen orbital, will have
occupation two in all the configurations. The other set, call active, are allowed to have
occupation lower than two. The active space is specified by the number of electrons to be
excited (m) and the number of active orbital (n). This sort of MCSCF method is known
as Complete Active Space Self Consisted Field (CASSCF). A CASSCF (m,n) means
that all the configuration yield from distribute m electrons in n orbital, are included in
the wave function.

1.4 Density Functional Theory

All of the methods described so far obtain the properties of the system from the wave
function. However, this wave function is a complex object from which it is difficult to
access to the desired chemical information. The Density Functional Theory (DFT) is a
different approach that extracts, in principle, any property of the system, not from the
wave function, but from a simpler object, the electron density ρ. The DFT machinery
rests on the Hohenberg-Kohn theorems.

1.4.1 First Hohenberg-Kohn theorem

First Hohenberg-Kohn Theorem. For any system of interacting particles in an ex-
ternal potential Vext(r), this potential is determined uniquely, except for a constant, by
the ground state particle density ρ.

From this theorem, it follows that since the hamiltonian of the system is fully de-
termined by Vext(r), all the properties of the system are completely determined given
ρ.

The proof of 1.4.1 is straightforward. Suppose that there were two different external
potentials V

(1)
ext(r) and V

(2)
ext(r) which differ in more than a constant and which lead to

the same ground state density ρ(r). The two potentials lead to different hamiltonians ,

Ĥ(1) and Ĥ(2), with different ground state wave functions, Ψ(1) and Ψ(2), with the same
ground state density. Since Ψ(2) is not the ground state of Ĥ(1), it follows that

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 (1.31)

It is supposed that the ground state is non-degenerate. Otherwise, is not possible to
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assure the above inequality. The last term may be rewritten as

〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉 (1.32)

= E(2) +

∫
dr[Vext

(1)(r)− V
(2)
ext(r)]ρ(r) (1.33)

so that

E(1) < E(2) +

∫
dr[V

(1)
ext(r)− V

(2)
ext(r)]ρ(r) (1.34)

Considering E(2) in the same way as E(1) leads to

E(2) < E(1) +

∫
dr[V

(2)
ext(r)− V

(1)
ext(r)]ρ(r) (1.35)

If the two equations are add together, yields a contradictory inequality E(1) + E(2) < E(1) + E(2).
This establishes the desired result: there cannot be two different external potentials dif-
fering by more than a constant which give rise to the same non-degenerate ground state
charge state density.

1.4.2 Second Hohenberg-Kohn theorem

Second Hohenberg-Kohn Theorem. A universal functional for the energy E[ρ] in
term of the density ρ(r) can be defined, valid for any external potential Vext(r). For
any particular Vext(r) the exact ground state energy of the system is the global minimum
value of this functional, and the density ρ(r) that minimizes the functional is the exact
ground state density.

Since all the properties are determined by ρ, each property may be viewed as a func-
tional of ρ.

E[ρ] = FHK[ρ] +

∫
drVextρ(r) + VNN (1.36)

where VNN is the interaction energy of the nuclei and FHK is a universal functional of
the density which contains the kinetic and interaction energy functionals,

FHK[ρ] = T[ρ] + Vee[ρ] (1.37)

Now considerer a system with ground state density ρ(1), corresponding to an external
potential V

(1)
ext and a wave function Ψ(1). The energy of the system is

E(1) = EHK[ρ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ1〉 (1.38)

Consider now a different density ρ(2), which corresponds to a different wave function
Ψ(2). The variational principle assures that

E1 = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉, (1.39)
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so any trial density different from the exact gives an upper limit to the exact ground state
energy. In the Hohenberg-Kohn original work, the search of densities was constrained to
those densities associated with some external potential, Vext. These densities are called
V-representable. This condition may be relaxed by the N-representability constrain,
introduced by Levy. A density is said to be N -representable if it derives from a well-
behaved wave function and integrates to the number of electrons. The formulation
given by Levy, not only replaces the V-representability constrain to N-representability
constrain, but extends the Hohenberg-Kohn theorems to degenerated ground states.

From the second theorem of Hohenberg-Kohn it follows that, if FHK is known, the
ground state density and energy are available by minimization of the total energy of
the system with respect to variation in the density. However, it is not known how to
calculate FHK from the density. The Kohn-Sham approach tackles this problem including
the kinetic energy of a set of non-interacting electrons in terms of independent particle
wave functions, in addition to interaction terms modelled as density functionals.
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1.5 Density matrices and Related Functions

One of the postulates of quantum mechanics states that all the information of a molecular
system is contained in the wave function. However, as theoretical methods grow in
complexity the wave functions become progressively more diffuse objects. This is reason
why, in the spirit of the Density Functional Theory (DFT), it is customary to replace
the wave function by other more manageable mathematical functions. In this sense,
reduced density matrices (RDMs) provide us with a feasible formalism to recover not
only any property of the system but also get new insights of the collective behaviour of
the electrons.

1.5.1 The Electron Distribution

The wave functions obtained by any of the methods described in the previous section
are built with one electron bricks, the spin-orbitals, which describe regions of the space
occupied by a single electron with a given spin. According to the statistical interpretation
of quantum mechanics, only the square of the wave function has a true physical meaning.
This means that, even though a spin-orbital by itself is not an observable, its square
has a clear physical interpretation. Consider a single electron with spin α described
by the orbital ψa(r). Its wave function is then given by φa(x) = ψa(r)α(σ), and the
probability of finding it in the volume element dr placed at the point r and with a spin
value between σ and σ + dσ is given by

ρ(x)dx = |φa(x)|2dx = |ψa|2|α(σ)|2drdσ (1.40)

The probability of finding the electron in the volume element dr with any spin is ob-
tainend by integrating only the spin variable σ:

P (r)dr =

∫
ρ(x)dσ = dr

∫
|φa(x)|2dσ (1.41)

The functions ρ(x) and P (r) are then probability densities. They can be generalized to
the case of many electron systems described by general wave functions Ψ(x1,x2, . . . ,xn).
The probability of finding an electron in a volume element dx1 at x1, another electron
in a volume element dx2 at x2, and so on is given by

Ψ(x1,x2, . . . ,xN)Ψ∗(x1,x2, . . . ,xN)dx1dx2. . .dxN (1.42)

If Ψ(x1,x2, . . . ,xN) is normalized, the electron distribution 1.42 satisfies∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x1,x2, . . . ,xN)dx1dx2 . . . dxN = 1 (1.43)

It is also possible to obtain the probability of finding a set of n electrons in the vol-
ume element dx1dx2 . . . dxn at the point x1x2 . . .xn by integrating the spatial and spin
variables of the remaining N − n electrons

dx1dx2. . .dxn

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x1,x2, . . . ,xN)dxn+1. . .dxN . (1.44)

25



We define the probability density ρn(x1, . . . ,xn) as the integral in the above expression
multiplied by the normalization factor

(
N
n

)
n!:

ρn(x1, . . . ,xn) =

(
N

n

)
n!

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x1,x2, . . . ,xN)dxn+1. . .dxN (1.45)

Similarly to Eq.1.41, the spinless counterpart of this probability density may be obtained
by integrating the spin variables, yielding the spinless probability density

ρn(r1, . . . , rn) =

∫
ρn(x1, . . . ,xn)dσ1 . . . dσn. (1.46)

For n = 1, ρn(r1, . . . , rn) becomes the ordinary electron density ρ(r), used in DFT
calculations and obtained by X-ray crystallography experiments. For n = 2, the so-
called pair density, ρ2(r1, r2), is obtained. All the ρn are normalized to the n-tuple of
electrons ∫

ρn(r1, . . . , rn)dr1, . . . , drn =

(
N

n

)
n!, (1.47)

with the particular cases for n = 1,∫
ρ1(r1)dr1 = N, (1.48)

and n = 2, ∫
ρ2(r1, r2)dr1dr2 = N(N − 1). (1.49)

1.6 Reduced Density Matrices

In order to evaluate the average value of any observable, we introduce here the con-
cept of reduced density matrix (RDM). Given an N -electron system, characterized by a
normalized wave function Ψ, the n-order reduced density matrix (n-RDM) is defined as

ρn(x1,x2, ...,xn; x′1,x
′
2, ...,x

′
n) =

(
N

n

)
n!

∫
Ψ(x1,x2, ...,xn, ...,xN)×

Ψ∗(x′1,x
′
2, ...,x

′
n, ...,xN)dxi>n. (1.50)

n-RDMs are Hermitian and antisymmetric in each set of indices, so that

ρn(x1,x2, ...,xn; x′1,x
′
2, ...,x

′
n) = ρ∗n(x′1,x

′
2, ...,x

′
n; x1,x2, ...,xn) (1.51)

ρn(x1,x2, ...,xi,xj, ...,xn; x′1,x
′
2, ...,x

′
n) =

−ρn(x1,x2, ...,xj,xi, ...,xn; x′1,x
′
2, ...,x

′
i,x
′
j, ...,x

′
n). (1.52)
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By recurrence, it is possible to obtain lower order densities from the higher ones

ρn−1(x1, . . . ,xn−1; x′1, . . . ,x
′
n−1)

=
1

N − n+ 1

∫
ρn(x1, . . . ,xn; x′1, . . . ,x

′
n)dxn (1.53)

As we have announced at the beginning of this section, the formulation given in Eq.1.50
allow us to express the average value of any n-electrons operator in terms of n-RDMs.
As an example, the expectation value of a one electron operator Â is given by

〈Â〉 = N

∫
x1=x′1

Ψ(x1, . . . ,xN)ÂΨ∗(x′1, . . . ,x
′
N)dx1, . . . , dxN (1.54)

=

∫
x1=x′1

Âρ1(x1; x′1)dx1. (1.55)

The probability densities or distributions, introduced in Eq.1.45, are just the diagonal
elements of the n-RDMs

ρn(x1,x2, . . . ,xn; x′1,x
′
2, . . . ,x

′
n)|x=x′ = ρn(x1,x2, . . . ,xn) (1.56)

In what follows, we will only focus in the diagonal and spinless part of n-RDMs, so
unless they were necessary, we will drop the primed variables.

1.6.1 Cumulants from n-RDMs

The n-RDMs defined above have a part that can not be expressed in terms of RDMs of
orders lower than n. These terms are known as cumulant densities matrices. The nth

order cumulant density matrix (n-CDM) is said to be the irreducible part of the n-RDM,
and it contains the n-electrons correlation of the system. As we will see, to find explicit
expressions for the n-CDMs is essential to obtain chemical bonding indicators at the HF
and correlated levels of calculation. From the diagonal and spinless RDM defined in Eq
1.46, the explicit formulas for the first four CDMs are the following (See Appendix)

ρ1
C(r1) = ρ1(r1) (1.57)

ρ2
C(r1, r2) = ρ1(r1)ρ1(r2)− ρ2(r1, r2) (1.58)

ρ3
C(r1, r2, r3) = ρ1ρ2ρ3 −

1

2
Ŝρ1ρ23 +

1

2
ρ123, and (1.59)

ρ4
C(r1, r2, r3, r4) = ρ1ρ2ρ3ρ4 −

1

3
Ŝρ1ρ2ρ34 +

1

6
Ŝρ1ρ234

+
1

6
Ŝρ12ρ34 −

1

6
ρ1234, (1.60)

where

Ŝρ1ρ23 = ρ1ρ23 + ρ2ρ13 + ρ3ρ12 (1.61)

Ŝρ1ρ2ρ34 = ρ1ρ2ρ34 + ρ1ρ3ρ24 + ρ1ρ4ρ23

+ ρ2ρ3ρ14 + ρ2ρ4ρ13 + ρ3ρ4ρ12 (1.62)

Ŝρ1ρ234 = ρ1ρ234 + ρ2ρ134 + ρ3ρ124 + ρ4ρ123 (1.63)

Ŝρ12ρ34 = ρ12ρ34 + ρ13ρ24 + ρ14ρ23 (1.64)
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are fully symmetrized products ,and ρi, ρij, ρijk, and ρijkl abbreviations for ρ1(ri),
ρ2(ri, rj), ρ3(ri, rj, rk), and ρ4(ri, rj, rk, rl), respectively. In applying nCDMs to the
chemical bond theory, their recursivity will play a key role

ρn−1
c (r1, . . . , rn−1) =

∫
ρnC(r1, . . . , rn−1, rn)drn (1.65)

By a successive application of Equation 1.65, the number of electrons is recovered∫
ρnc (r1, ..., rn) dr1...drn = N (1.66)

1.6.2 nCDMs at single determinant level

Although the Eqs.1.57, 1.58, 1.59, and 1.60 are valid for single (SDW) and multideter-
minant wave functions (MDW), as a pedagogical case, we apply these equations to the
former case. The n-RDMs at the SD level may be obtained through the Fock-Dirac
expansion

ρn(x1, . . . ,xn) =

∣∣∣∣∣∣∣∣∣
(1, 1) (1, 2) . . . (1, n)
(2, 1) (2, 2) . . . (2, n)

...
...

. . .
...

(n, 1) (n, 2) . . . (n, n)

∣∣∣∣∣∣∣∣∣ , (1.67)

where (i, j) is an abbreviated notation for the non-diagonal first-order RDM, ρ1(xi,xj).
Only (n − 1)! of the n! products of the form ±(1, i1)(2, i2) . . . (n, in), where (i1, . . . , in)
is a permutation of (1, . . . , n) do not contain (i1, i1) elements, so they contribute to the
irreducible part of n-RDM. For instance, the 3-RDM is given by

ρ3(x1,x2,x3) = (1, 1)(2, 2)(3, 3)+(1, 2)(2, 3)(3, 1)+(1, 3)(3, 2)(2, 1)

− (1, 3)(2, 2)(3, 1)−(1, 2)(2, 1)(3, 3)−(1, 1)(2, 3)(3, 2) (1.68)

From these, only the 2nd and the 3rd ones contribute to ρ3
C :

ρ3
C(x1,x2,x3) =

1

2!
[(1, 2)(2, 3)(3, 1) + (1, 3)(3, 2)(2, 1)] . (1.69)

The numerical factor is always 1/(n− 1)!, which coincides (in absolute value) with the
coefficient of ρn in the expansion of ρnC . (n−1)! is the number of forms in which the circuit
1→ a→ b→ · · · → 1 can be travelled. For n = 3, there are only the 2! = 2 possibilities
that appear in Eq. 1.69: 1 → 2 → 3 → 1 (clockwise) and 1 → 3 → 2 → 1 (anti-
clockwise). However, for n = 4 we have (1→ 2→ 3→ 4→ 1), (1→ 2→ 4→ 3→ 1),
(1 → 3 → 2 → 4 → 1), (1 → 3 → 4 → 2 → 1), (1 → 4 → 2 → 3 → 1), and
(1 → 4 → 3 → 2 → 1). Indeed, for each n (except n = 2) there are only (n − 1)!/2
independent circuits if the direction of the arrows is irrelevant.
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1.6.3 Pair density and electron correlation

We have seen in the previous section how the RMDs formalism supply us with a vast
arsenal to face the electron distribution problem. Since Lewis proposed one of the first
models of chemical bonding, many efforts have been conducted to treat to express his
ideas in a quantum mechanical parlance. The pair density ρ2(r1, r2 in Eq.1.49) is the
cornerstone to understand the electron pairing proposed by Lewis 90 year ago. From
Eq. 1.58, ρ2(r1, r2 has the form

ρ2(r1, r2) = ρ(r1)ρ(r2)− ρ2
C(r1, r2) (1.70)

(1.71)

As we have mentioned, this function gives a measure of the probability of finding any
pair of electrons at the points r1 and r2 no matter where the remaining electrons of the
system are. With the aim to extract all the information contained in ρ2, we will develop a
population analysis based on the conditional probability Pcond, defined as the probability
of finding an electron at r2 when it is known that the first electron or reference electron
is placed at r1

Pcond(r1|r2) =
ρ2(r1, r2)

ρ(r1)
, (1.72)

Since the reference electron is arbitrary located at r1, Pcond integrates to N − 1∫
Pcond(r1|r2)dr2 = N − 1 (1.73)

To explore the pair correlation, the exchange-correlation hole is defined as the difference
between the full electron density and the the conditional probability

hxc(r1|r2) = ρ(r2)− Pcond(r1|r2) (1.74)

=
ρ2
C(r1, r2)

ρ(r1)
(1.75)

The exchange-correlation hole give us a measure of the pair-correlation, attaining its
minimum value in the limiting case of independent particles. In such case, the pair
density is given by

ρind2 =
N − 1

N
ρ(r1)ρ(r2), (1.76)

where the prefactor (N−1)/N takes into account that, once one electron is located at r1,
the density of the other should integrate to N−1. As it was announced in section 1.6.1,
ρ2
C(r1, r2) gives also a measure of the pair-correlation. As the pair correlation increases,
ρ2(r1, r2) decreases through the contribution of ρ2

C(r1, r2) and consequently a “hole” is
generated in the pair density. hxc may be understood as the measure of such “hole”.

By means of hxc it is not only possible to account for the total correlation, but also
distinguish the correlation effects between electrons with the same and opposite spins:

hxc(x1|x2) = hσ1=σ2
xc (r1|r2) + hσ1 6=σ2xc (r1|r2) (1.77)

= hF (r1|r2) + hC(r1|r2). (1.78)
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The first term in Eq 1.77 is known as the Fermi hole, and takes into account the cor-
relation between electrons with the same spin (Fermi correlation), as a consequence of
the exclusion principle. The second terms contains the correlation between electrons
with opposite spins (Coulomb correlation) and it is known as the Coulomb hole. It is
a consequence of the repulsion suffered by the electron due to its charge, no matter the
spin. Some of the properties that hxc satisfies are∫

dr1hF (r1|r2) = 1 (1.79)

hF (r1 → r2|r2) = ρ(r1) (1.80)∫
dx1hC(r1|r2) = 0. (1.81)

The properties 1.79, 1.80, and 1.81 are a consequence of the independence of electrons
with different spin. Due to orthogonality of the spin function, setting an electron with
spin α (β), only generates a “hole” in the α(β) density. Note that, even in indepen-
dent particle models such as the Hartee-Fock method, the Fermi correlation remains,
avoiding the cancellation of the Fermi hole. By contrast, in such models, the coulombic
contribution to the correlation is neglected.
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2 Topology

We interrupt here the statistical analysis started in the previous section to present a
different mathematical tool, the topological analysis. Topological approaches make use
of the topology of any chemically relevant scalar field to split the real space in different
regions. These approaches help us to leave the traditional analysis based on the Fock
space and how molecular orbitals guard the space and replace them by orbital invariant
analyses of real space.

2.1 The Gradient Vector Field

Given a scalar function defined in the real space R3, ρ(r) = ρ(x, yz), the gradient vector
field of ρ is defined as

~∇ρ = i
∂ρ

∂x
+ j

∂ρ

∂y
+ k

∂ρ

∂z
= iρx + jρy + kρz. (2.1)

The gradient vector field is represented through a set of lines, known as gradient paths,
which are the solution of a first order differential equation:

dx(s)

ds
= ∇ρ(r(s)), (2.2)

where the parameter s is the distance from some starting point s1. By integration of
Eq.2.2, we get the position of any point of the gradient path that passes through the
reference point r(s1),

r(s) = r(s1) +

∫ s

s1

∇ρ(r(t))dt. (2.3)

For each of the three directions of R3 we get a similar equation to 2.3. In the real space
these gradient paths may be identified as trajectories of the gradient vector field ~∇ρ.
Some of their properties are:

1. Since the gradient vector always point in the direction of greatest increase in the
scalar field, the trajectories of ~∇ρ are perpendicular to lines of constant value of
ρ.

2. The vector ~∇ρ is tangent to its trajectory at each point r(s).

3. Every trajectory must originate or terminate at a point where ~∇ρ vanishes or in
the infinity.
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4. Trajectories can not cross since ~∇ρ defines only one direction at each point r(s).

Specially relevant to analyze the topology of ρ are those points where ~∇ρ vanishes,
known as critical points (CPs):

~∇ρ = i
∂ρ

∂x
+ j

∂ρ

∂y
+ k

∂ρ

∂z
= iρx + jρy + kρz = ~0. (2.4)

Each CP of ρ may be classified by means of the second derivatives. In R3, there are nine
second derivatives of the form ∂2ρ

∂xi∂xj
, being xi and xj any given pair of axis. They may

ordered to form a 3× 3 matrix called the Hessian matrix of ρ, or simply, the Hessian of
ρ. At any given point x0, this matrix has the form

H(x = x0) =


∂2ρ
∂x2

∂2ρ
∂x∂y

∂2ρ
∂x∂z

∂2ρ
∂y∂x

∂2ρ
∂y2

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z2


x=x0

. (2.5)

H is a real and symmetric matrix and, as such, it can be diagonalized. The eigenvectors
and the eigenvalues of H are the principal axes of curvature and the curvatures of ρ
respectively. Since the three eigenvalues are real, they may be equal to zero. Any
critical point of ρ may be classified by its rank (ω) and by its signature (σ). The former
is defined as the number of non-zero curvatures, and the last as the sum of the signs of
the eigenvalues. Then, any given CP is labelled by the pair of values (ω, σ). In R3 any
CP with ω < 3 is a degenerated critical point. The CPs of rank 3 may be classified as
follows:

• (3,-3): All the curvatures are negative and ρ is a local maximum at the CP.

• (3,+3): All the curvature are positive and ρ is a local minimum at the CP.

• (3,-1): ρ is a maximum at the CP in the plane defined by the axes with negative
curvature and is minimum along the axis with positive eigenvalue, perpendicular
to the other two axes. It is called a type-I saddle point.

• (3,+1): ρ is a minimum at the CP in the plane defined by the axes with positive
curvature and is maximum along the axis with negative eigenvalue, perpendicular
to the other two axes. It is called a type-II saddle point.

Each CP has associated a basin, given by all the points which belong to any trajectory
that born or die in such CP. Mathematically, the former set is known as α-limit and the
second as ω-limit.

Analyzing the CPs of any chemical sound scalar field, such as the electron density,
the electron localization function (ELF) or the molecular electrostatic potential (MEP),
many insights on the electron structure may be obtained. In what follows, we are going
to focus on the topology of the first of these fields, the electron density.
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Figure 2.1: Gradients lines of the four kinds of critical point in R3:(3,-3),(3,-
1),(3,+1),(3,+3).

2.2 Topology of the charge density

The gross form of the charge density, ρ, is dominated by cusps at the nuclear positions
, due to the coalescence between the electron and the nucleus at such positions, as
predicted by Kato[14]. This result has been widely proben not only with densities
obtained by first principles, but also with experimental densities obtained by X-ray
diffraction. The cusp condition avoids ρ to be a true differentiable field. However, it
is possible to replace the cusp at nuclear positions by maxima, identifying the nuclear
positions as (3,-3) CPs of ρ.

Mapping the density of many systems, it is found that all the saddle points of type
I, CPs (3,-1), are placed between each pair of nuclear maxima, known then as bonding
critical points (BCPs). For each BCP, there are a pair of gradient lines that terminate
at the neighbouring maxima, known as bond path. The existence of a (3,-1) CP and
its associated bond path lead to an accumulation of charge density between the linked
nuclei. Then, it is said that both nuclei are bonded. From the display of the CPs of
ρ, it is possible to define the molecular graph associated to a given configuration as the
union of the bond paths.

By the inspection of more complex structures, (3,+1) and (3,+3) CPs are found.
(3,+1) CPs appear is such structures where there is a planar region rounded by CPs,
e.g. diborane presents a (3,+1) between the B atoms. (3,+1) CPs are known as ring
critical points (Figure 2.2).

Figure 2.2: Molecular graph of the molecule of diborane.
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The (3,+3) CPs are found in three-dimensions frames, such as cubane, and they are
called cage critical points (Figure 2.3).

Figure 2.3: Molecular graph of the molecule of cubane.

The number and type of CPs which can coexist in a system with a finite number of
nuclei are governed by the Morse relationship. In the case of ρ, this relation states that

n− b + r− c = τ,

where n is the number of nuclei, b the number of bond paths, r the number of rings, and
c the number of cages. τ is 1 in finite systems ,i.e molecules, and 0 in periodic systems,
such as crystals. The collection (n, b, r, c) is called the characteristic set of the system.

2.3 Quantum Theory of Atoms in Molecule

The Quantum Theory of Atoms in Molecules (QTAIM) envisioned by R. F. W. Bader
[3] is one of the most important theories for the analysis of the chemical bond in the real
space. In the QTAIM the space is partitioned in disjoint regions, characterized by its
surfaces: the flux lines generated by the gradient of the electron density do no traverse
them. Mathematically this condition is expressed as

∇ρ(r) · n(r) = 0, (2.6)

where n(r) is a normal vector to the surface at point the r and ∇ρ(r) is the gradient of
ρ(r) at r. These regions, which partition the real space exhaustively (∪Mi=aΩa = R3) do
usually contain one and only one nucleus and are then called atomic basins (nucleus ⇔
atomic basin). They can be identified as the atoms in the molecule.

2.3.1 Atomic Properties

Once the real space is exhaustively partitioned in atomic basins, it is possible to define
the atomic average of an operator Â as

AΩ = 〈ÂΩ〉 =

∫
Ω

dr

∫
dr′

N

2

[
Ψ∗ÂΨ + (ÂΨ)∗Ψ]. (2.7)
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An atomic property is therefore determined by the integration of a corresponding prop-
erty density, ρA, over the basin of the atom

AΩ =

∫
Ω

drρA (2.8)

where

ρA =
N

2

∫
dr′[Ψ∗ÂΨ + (ÂΨ)∗Ψ] (2.9)

The above equations can also be expressed in terms of the reduced density matrices. If
Â is a one-electron operator, Eq 2.8 becomes

AΩ =

∫
Ω

drÂ(r; r′)ρ(r; r′)|r=r′ . (2.10)

If Â is by contrast a two-electron operator

AΩ =

∫
Ω

dr1

∫
Ω

dr2Â(r1; r2)ρ2(r1; r2). (2.11)

The most important consequence of the definition of an atomic property is that the
average value of any observable may be partitioned in atomic contributions

〈Â〉 =
∑

Ω

AΩ (2.12)

Eq 2.12 states that each atom makes an additive contribution to any property of the
system, recovering on the essential blocks of the chemistry: atoms and functional groups
make recognizable contributions to the total properties of a system.

The simplest operator that we can integrate over a basin is the unity, Â = 1. The
property density associated to unity operator is the charge density and, from 2.9, the
atomic population of atom Ω, defined as the average number of electrons in the basin
Ω, NΩ, is given by

NΩ =

∫
Ω

ρ(r)dr (2.13)

Equivalently, from 2.11, the average number of pairs in the basin Ω may be cast as

D2(Ω,Ω) =

∫
Ω

∫
Ω

ρ2(r1; r2)dr1dr2 (2.14)

Any component of the energy of the system may be also partitioned into atomic con-
tributions. For instance, one of the forms of the kinetic energy of the electrons in the
basin A is given by

TA =

∫
ΩA

dr∇′∇ρ(r; r′)|r=r′ . (2.15)
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The electron-nucleus interaction may be partitioned as

V AB
en = −ZB

∫
ΩA

ρ(r)

|r−RB|
dr (2.16)

where V AB
en is the interaction between electrons in the basin A and the nucleus B. Note

that V AB
en 6= V BA

en . Even if nucleus A and B were equal, if their basins were not identical
both terms would be different. The electron-electron interaction may be cast as

V AB
ee =

1

2

∫
ΩA

∫
ΩB

r−1
12 ρ2(x1,x2)dx1dx2 (2.17)

where V AB
ee is the electron repulsion between electrons in the basin A and the electrons

in the basin B.
With the expressions given in Eqs. 2.15, 2.16, 2.17, the energy of atom A is defined

as

EA = TA + V AA
en +

∑
B 6=A

V AB
en + V AA

ee +
∑
B 6=A

V AB
ee . (2.18)

As an atomic property, the total energy E, may be recovered as the sum of all the atomic
energies.

E =
∑
A

EA (2.19)

This energetic partition is the source of the widely accepted IQA procedure [15],
[16],[17]. IQA gathers appropriately the energetic terms in such a way that chemical
intuition is recovered. Thus,

E =
∑
A

(TA + V AA
en + V AA

ee )

+
∑
A>B

(V AB
nn + V BA

en + V AB
ee )

=
∑
A

EA
self +

∑
A>B

EAB
int

(2.20)

Separating intra-basin (intra-atomic) from inter-atomic terms, the total energy is split
is self and interaction energies. When no interaction exits among atoms, EA

self collapses
over the in vacuo atomic energy. Taking an appropriate atomic reference, the deforma-
tion energy of the atom A is defined as EA

def = EA
self −EA

ref , where EA
ref is the energy of

the atom A in its reference state. Now, the binding energy is defined as

Ebind = E −
∑
A

EA
def =

∑
A

EA
def +

∑
A>B

EAB
int (2.21)
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In this approach, the bonding may be understood as a balaced between deformation
energies (usually positive) and interaction energies (overall negatives) . The partition
of the 2RDM into Coulomb and exchange-correlation terms (Eq. 1.58) facilitates a
meaningful rearrangement of the interaction energy, into the respective Coulomb and
exchange-correlation parts. V AB

ee = V AB
Coul + V AB

xc , and the classical component of the
interaction energy is defined V AB

cl = (V AB
nn + V AB

en + V BA
en + V AB

Coul).
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3 Chemical bonding in real space

Understanding chemical bonding forms the undisputed foundation of chemistry. How-
ever, chemical bonds are not directly observables, so it is not possible to define any
quantum mechanics operator associated with them (although Bader has claimed that a
Bond Path operator exist [18]). These difficulties motivated quantum chemists to find
different strategies to link classical (i.e. prequantum-mechanics) and quantum mechan-
ical concepts. Many years after Lewis announced its model, Daudel [4] and co-workers
searched how to divide the real space in disjoint regions or lodges such that they repre-
sent the most probable division of the physical space of a system into localized groups of
electrons. These loges can be found, in principle, by minimizing the Shannon entropy,
defined as

I(Pn,Ω) = −
∑
n

Pn(Ω)ln(Pn(Ω)),

where Pn(Ω) is the probability of finding n electrons in the region (or lodge) Ω and the
other (N − n) in the complementary region Ω′ = R3 − Ω:

Pn(Ω) =

(
N

n

)∫
Ω

dr1 . . . drn

∫
Ω′
drn+1 . . . drNρN(r1, . . . .rN). (3.1)

Bader and Stephens showed in their seminal paper [10] that all the requirements for
electron localization are contained in the electron (ρ1) and pair (ρ2) densities.

3.1 Pair density and electron localization

Given an exhaustive bipartition of the real space (Ω ∪ Ω′ = R3), defined by Bader’s
theory or another, the probability of finding n electron in one of such regions Ω and the
remaining N −n electrons in the complementary region Ω′ = R3−Ω is given by Eq. 3.1.
In terms of Pn, the average number of pairs in Ω is given by

D2(Ω,Ω) =

∫
Ω

∫
Ω

ρ2(r1, r2) =
∑

n
Pn(Ω)n(n− 1). (3.2)

From the cumulant expansion of 2RDM, ρ2(r1, r2) = ρ(r1)ρ(r2) − ρ2
C(r1, r2), Eq. 3.2

becomes
D2(Ω,Ω) = 〈NΩ〉2 − 〈NΩ,Ω〉 (3.3)

where

〈NΩ〉 =

∫
Ω

dr1ρ(r1) (3.4)
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and

〈NΩ,Ω〉 =

∫
Ω

dr1

∫
Ω

dr2ρ
2
C(r1, r2). (3.5)

The quantity 〈NΩ,Ω〉 may be understood as a measure of the total correlation inside
the region Ω, since it reduces the number of pairs created by an independent electron
distribution. 〈NΩ,Ω〉 is closely connected with the fluctuation in the population of Ω,
defined as

Λ(Ω) =
N∑
n=0

Pn(Ω)(n− 〈NΩ〉)2 =
N∑
n=0

n2Pn(Ω)−
N∑
n=0

nPn(Ω)

= 〈N2
Ω〉 − 〈NΩ〉2. (3.6)

On the other hand, D2(Ω,Ω) in Eq. 3.3 may also be written as

D2(Ω,Ω) =
∑

n
Pn(Ω)n(n− 1) = 〈N2

Ω〉 − 〈NΩ〉. (3.7)

From Eqs. 3.4 and 3.7, we have

〈N2
Ω〉 = 〈NΩ〉2 + 〈NΩ〉 − 〈NΩ,Ω〉, (3.8)

and substituting this equation in 3.6 we finally get

Λ(Ω) = 〈NΩ〉 − 〈NΩ,Ω〉. (3.9)

〈NΩ,Ω〉 decreases the fluctuation in the population of Ω, increasing the electron local-
ization in such region. Due to this property this term receives the name of localization
index. When 〈NΩ,Ω〉 attains its maximum value, 〈NΩ〉, the fluctuation Λ(Ω) becomes
zero, generating a situation of maximum localization. In such a case, the probability
of finding n electrons in Ω, Pn(Ω), becomes one, 〈NΩ〉 is equal to n, and the average
number of pairs in Ω is 〈NΩ〉(〈NΩ〉 − 1). This limit situation is known as a pure pair
population.

Similarly, one can measure the degree of localization of the electrons in two different
regions Ω1 and Ω2 by determining the fluctuation in the population of the combined
region Ω = Ω1 + Ω2

Λ(Ω) = Λ(Ω1) + Λ(Ω2)− 2〈NΩ1,Ω2〉 (3.10)

where

〈NΩ1,Ω2〉 =

∫
Ω1

dr1

∫
Ω2

dr2ρ
2
C(r1, r2) (3.11)

and Λ(Ω1) and Λ(Ω2) are given by Eq 3.6. The quantity 2〈NΩ1,Ω2〉 is a measure of the
extent to which electrons in Ω1 are delocalized over Ω2 and viceversa and it is known as
delocalization index δΩ1Ω2 .
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If these two regions complete the space, Ω1 ∪ Ω2 = R3, one finds that

〈NΩ1,Ω1〉+ 〈NΩ2,Ω2〉+ 2〈NΩ1,Ω2〉 = N (3.12)

Since for a closed system the number of electrons remains constant, maximizing the
degree of localization in a given region leads to a minimization of the electron delo-
calization between different regions. The number of pairs that can be formed between
electrons in different regions is given by

D2(Ω1,Ω2) =

∫
Ω1

∫
Ω2

ρ2(r1, r2) = 〈NΩ1〉〈NΩ2〉 − 〈NΩ1,Ω2〉 (3.13)

In the limit of pure pair population, 〈NΩ1,Ω1〉 and 〈NΩ2,Ω2〉 attain their maxima values,
〈NΩ1〉 and 〈NΩ2〉, respectively. In that case, the delocalization index, 2〈NΩ1,Ω2〉, becomes
zero and the electrons are perfectly localized in both regions. The number of pairs formed
between the two regions, becomes from Eq 3.10 equal to the number of pairs that be
formed with two sets of distinct objects.

If real space is partitioned into several regions, ∪mi=aΩa = R3 (m ≥ 2), the above
relations between the delocalization and localization indices may be generalized. For
instance, Eq. 3.29 becomes ∑

a

〈Naa〉+ 2
∑
a6=b

〈Nab〉 = N, (3.14)

where the indices a, b, . . . run over the basins. The definitions of localization and delo-
calization indices both together with Eqs 3.6 and 3.7 show how the inter and intra cor-
relation may be described from the second order cumulant, ρ2

c(r1, r2). Indeed, ρ2
c(r1, r2)

may be seen as a generator of 2-particle fluctuation in the electron distributions [19]. We
shall see how all these concepts many be generalized, not only for two disjoint domains
in the real space, but for any number (m ≥ 2) of regions by means of nth order cumulants

3.2 Generalized population analysis

Given an exhaustive partition of real space, ∪mi=aΩa = R3, , the properties of cumulants
can be used to obtain a one basis partition of the electron density ρ(r) = ρ1

C(r) from the
second order cumulant ρ2

C(r1, r2)

ρ1
C(r) =

m∑
a

∫
Ωa

dr2ρ
2
C(r, r2) =

m∑
a

ρ1
a(r), (3.15)

Similarly, ρnC(r) allows for a (n− 1)-basin partition of ρ1
C(r):

ρ1
C(r) =

m∑
ab

ρ1
ab(r) =

m∑
ab

∫
Ωa

dr2

∫
Ωb

dr3 ρ
3
C(r, r2, r3), (3.16)

ρ1
C(r) =

m∑
abc

ρ1
abc(r) =

m∑
abc

∫
Ωa

dr2

∫
Ωb

dr3

∫
Ωc

dr4 ρ
4
C(r, r2, r3, r4). (3.17)
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This partition of ρ1
C(r) into basins, pairs of basins, etc, may also be extended to higher

CDMs:

ρ2
C(r1, r2) =

m∑
a

ρ2
C,a(r1, r2) =

m∑
a

∫
Ωa

dr3ρ
3
C(r1, r2, r3) (3.18)

ρ2
C(r1, r2) =

m∑
ab

ρ2
C,ab(r1, r2) =

m∑
ab

∫
Ωa

dr3

∫
Ωb

dr4ρ
4
C(r1, r2, r3, r4). (3.19)

For each ρnC , we can also integrate the nth electron such that the result is a scalar
depending only on the definition of the Ωi basins:

〈Na〉 =

∫
Ωa

dr1 ρ
1
C(r1), (3.20)

〈Nab〉 =

∫
Ωa

dr1

∫
Ωb

dr2 ρ
2
C(r1, r2), (3.21)

〈Nabc〉 =

∫
Ωa

dr1

∫
Ωb

dr2

∫
Ωc

dr3 ρ
3
C(r1, r2, r3), (3.22)

〈Nabcd〉 =

∫
Ωa

dr1

∫
Ωb

dr2

∫
Ωc

dr3

∫
Ωd

dr4 ρ
4
C(r1, r2, r3, r4). (3.23)

Eq. 3.20 gives the average number of electrons in the basin Ωa, 2〈Nab〉 coincides with
the localization index between basins Ωa and Ωb given in Eq 3.8. The n-center delocal-
ization index can be defined as n!〈Nabcd,...,n〉 and denoted by δabcd,...,n. Eq. 3.11 may be
generalized to a n center partition of the electron population

N =
∑m

a
〈Na〉 (3.24)

〈Na〉 = 〈Naa〉+ 2
∑m

b6=a
〈Nab〉 (3.25)

From the recursivity of cumulants, each the n-center partition of the first order density
integrates to the corresponding n-center DI∫

ρ1
a(r)dr = 〈Na〉 (3.26)∫

ρ1
ab(r)dr = 〈Nab〉 (3.27)∫

ρ1
abc(r)dr = 〈Nabc〉 (3.28)

Each of these generalized densities may re-written in a matrix notation with the unified
expression

ρ1
abc...(r) = φ(r)Dabc...φ(r)†, (3.29)
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where the φ(r) matrix contains the set of occupied molecular orbitals (MOs) and Dabc...

is a symmetric matrix. By diagonalization of Dabc..., ρ1
abc...(r) may be expressed as sum

of quadratic forms

ρ1
abc...(r) =

N∑
i

nabc...i (ψabc...i )2, (3.30)

where N is the number of occupied MOs, the set ψabc...i are the eigenvectors of Dabc... and
nabc...i its eigenvalues. Since the trace of Dabc... recovers the average populations 〈Nabc...〉
, the n-center DI are connected with nabc...i by

N∑
i

nabc...i =
δabc...

n!
. (3.31)

The eigenvectors ψabc...i may be understood as effective one-electrons functions that con-
tribute additively to the delocalization index between n centers. In the case of one
center, the diagonalization of Da leads to a set of orthonormal orbitals widely explored
in the literature and known as domain natural orbitals (DNOs). This set may be either
localized in the basin Ωa or its complementary, or delocalized over different basins. It
has been found that only such delocalized DNOs contribute to the bonding, describing
effective quasiparticles that behave as statically independent particles [20]. From this
probabilistic interpretation, the eigenvalue nai may be understood as the probability that
the effective electron ψa...i rests in the basin Ωa [20]. When more than one basin is in-
volved, the set of functions ψabc...i are known as Natural Adaptive Oribitals (NAdOs)[13].

As we did before, it is convenient at this moment to illustrate how to get the general
expressions for the n-center bonding indices, 〈Nabc...〉, densities, ρ1

abc...(r), etc, for single-
determinant wave functions (SDWs). The spinless non-diagonal elements of 1-RDM for
a closed-shell SDW are given by

ρ1(ri, rj) =

N/2∑
k=1

2φk(ri)φk(rj). (3.32)

Taking into account this expression and the orthogonality of α and β spin functions, the
spinless 2-CDM, ρ2

C(r1, r2), is given by

ρ2
C(r1, r2) =

∫
ρ2
C(x1,x2)ds1ds2 (3.33)

=
1

2
ρ1(r1, r2)ρ1(r2, r1) (3.34)

=

N/2∑
k,l

2φk(r1)φk(r2)φl(r2)φl(r1). (3.35)

The n-CDM with n > 2 including spin for SDWs is given by a linear combination
of (n − 1)! terms of the form (1ab . . . 1) = (1, a)(a, b) . . . (c, 1) . Integrating the spin
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coordinates one has∫
(1ab . . . 1) dsi≤n = 2

∑
kl...m

φk(r1)φk(ra)φl(ra)φl(rb) . . . φm(rc)φm(r1) (3.36)

= 21−nρ1(r1, ra)ρ
1(ra, rb) . . . ρ1(rc, r1). (3.37)

Finally, condensing the electrons 2, 3, . . . , n into Ωa, Ωb, . . . , Eq. 3.29 is obtained, with
Da, Dab, Dabc, . . . , given now by

(Da)ij = 2 (Sa)ij (3.38)

(
Dab
)
ij

=

N/2∑
l=1

[
SailS

b
lj + SbilS

a
lj

]
(3.39)

(
Dabc

)
ij

=
1

3

N/2∑
l,m=1

[
SailS

b
lmScmj + SailS

c
lmSbmj + . . .

]
, (3.40)

where SΩ
kl are the elements of the atomic overlap matrix (AOM)

SΩ
kl =

∫
Ω

φk(r)φl(r)dr. (3.41)

For the general case, we have(
DΩ1...Ωp

)
ij

=
2

p!

∑
i1i2...ip−1

ŜΩ1...Ωp

[
SΩ1
ii1

SΩ2
i1i2

SΩ3
i2i3

. . .S
Ωp

ip−1j

]
. (3.42)

As we can see, Dabc... is given in all the cases by a normalized and symmetrized product
of AOMs.

Obtaining the bonding indices and ρ1
abc...(r) in the case of multideterminant wave

functions (MDWs) implies to compute the n-CDMs from RDMs, as it has been shown
before, and integrate them over basins Ωa,Ωb, .... In the results section, we shall calculate
〈Naa〉, 〈Nab〉, and two-center NAdOs of different molecular systems.
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3.3 Reduced Density Gradient

We leave the cumulant expansion of the electron density to focus in other related func-
tion: the reduced density gradient (s). s is a well-known function in the DFT parlance.
Its origen dates back to the generalized gradient contribution to the GGA exchange
energy, EGGA

x [21],

EGGA
x − ELDA

x = −
∑∫

F (s)ρ4/3(r)dr (3.43)

where F(s) is a function of the reduced density gradient,s, for a given spin defined as

s =
1

CF

|∇ρ|
ρ4/3

, CF = 2(3π2)1/3 (3.44)

From the defintion of s (Eq. 3.44) becomes that s a is semipositive definite function
(s ≥ 0), attaining its minima at the critical points of the electron density (∇ρ = 0). It
assumes large values in the exponentially decaying density far from the nuclei, where
the denominator approaches to zero more rapidly than the numerator. By contrast,
small values of s occurs close to the nuclei, due to the large values of the density in such
regions.

The average value of the reduced density gradient 〈s〉 is a measure of the inhomogene-
ity of the system. For a homogeneous electron gas is exactly zero and it increases in
leaving this reference system. In a real system, the roots of s occur , as aforementioned,
at the CPs of ρ (nuclei, bonding critical points,. . . ).

In 1991 Kohout, Savin and Preuss employed a similar function to s, −|∇ρ|
ρ

to resolve
the atomic shell structure. In 1997 Zupan and co-workers, analyzing local and semilocal
density functionals for the exchange-correlation energy, reported the capability of the
reduced density gradient to describe atomic shell structures. However, not many appli-
cations of s to molecular systems were carried out at first, despite the success of their
analysis. This situation has recently changed thanks to the fruitful analysis of long range
interactions by means of s, which has motivated the ongoing of new bonding descriptors
based on this function

3.3.1 Shell structure as described by s

The success of the reduced density gradient as an atomic shell descriptor is a consequence
of the exponential decay of the electron density[22],[23]. For r→∞, the electron density
of an atom is described by

√
ρ(r) → rκe−λr λ =

√
2IP

κ =
(Z −N + 1)

(λ− 1)
(3.45)
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where IP is the ionization potential, Z the nuclear charge and N the number of
electrons. For our purpose, let us suppose that κ = 0, then s is given by

s(r) =
1

CF

|ρ|
ρ

=
λ

CF
ρ−1/3 (3.46)

As long as the electron density of an atom is described by Eq. 3.46 with different value
of λ for each shell, then a step like diagram is represented by s(r). Core,Valence-Core
and Valence regions may be distinguished in such representation. As example, lets take
a look to three closed-shell systems as He, Ne and Ar atoms. Placed the atoms at r = 0,
(Fig. 3.1, left column), one, two and three minima are obtained for He, Ne and Ar
respectively in the s(r) plot, splitting the space in three regions:

• Pure core region: From r = 0 to the outermost maximum of s(r).

• Core-Valence(CV) transition region: From the end of the core region to
outermost minimum.

• Pure valence region: From the outermost minimum to the rest of space. Zupan
et al [24], limits this region to include those contributions from the outermost shell
whose reduced density gradients are comparable to those in the core. They defined
a fourth tail region which covers the rest of space.

In this work we shall focus on the dependence of s with the electon density, ρ. From
the s(ρ) plots (Figs 3.1, right column) of He, Ne and Ar, comes that this representation
do not solve atomic shell structure as well as s(r). One and two minina are observed
for He and Ne (the high density mininum of the K-L transition is only shown in the He
plot, but it exists in the three cases), but there is no a third mininum for Ar as it should
be expected. The missing of M shell is a consequence of the d orbitals. Keeping in mind
the expression of s(ρ) for a exponential density s(ρ) = λρ−1/3, the factor 1/ρ prevents
to split s(ρ) in orbital contributions. Nevertheless, the orbitals with the same principal
quantum number exhibit the main contribution to the total density at nearly the same
distance from the nucleus. Thus, orbitals within a particular shell are predominant in
the sum of densities being possible to split s(ρ) in shell contributions. The changes
in λ indicate the transition from one shell to another. However, if the density of one
shell decreases significantly, before the density of the next shell reaches its maximum,
the change in λ are overwhelmed by the increase of the term 1/ρ, being worse as the
distance of the shells increase. Figs 3.1 show a well resolved K, L shells, but a hardly
defined outer M shell. Regarding their topology, s(r) and s(ρ) representations attain
their minima values ( s = 0 ) at CPs of ρ(r). The number and the position of their
CPs are exactly the same, and the density at such points are exactly the same. This
equivalence may be easily probed by the chain rule:

ds(ρ)

dρ
=
ds(ρ)

dr

dr

dρ
=

ds(r)
dr

∇ρ
(3.47)
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Table 3.1: Reduced density gradient for the He (top), Ne (middle) and Ar (bottom)
atoms. s versus r is plotted in the left column and s versus ρ in the right
column.

The zeros in the numerator are CPs of s(r) and makes the above equation to satisfy
the condition of CP for s(ρ). The minima at CPs of ρ are consequence of the absolute
value of the gradient of ρ in the numerator. As a matter of fact s(ρ) is not differentiable
at such positions.

3.3.2 Revealing NonCovalent Interactions

The analysis of chemical bonding by means of s(r), reveals the capability of the reduced
density gradient to differentiate between different kind of interactions. In particular, the
properties of s(r) has been widely exploit to define one the most successful descriptor of
non-covalent interactions, the NCI index. From Eq 3.46, graphs of s versus ρ assume the
form s(ρ) = λ

CF
ρ−1/3. However, when any interaction occurs, the exponential density

model is no longer valid, leading a peak in the diagram which may lead to a zero of s(ρ)
or not. In the former case, the interaction occurs through a BCP of ρ(r), then NCI and
AIM theory coincide. In the later, AIM is blind to the interaction, but no NCI. This
is the case of steric hindrance, widely employed in Organic Chemistry to explain many
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reaction mechanisms.
Once the different interactions have been localized, it is customary to differentiate

between interaction types. The properties of the laplacian of the density (∇2ρ) have
been widely employed to classify chemical interactions[25]. The sign of ∇2ρ indicates
whether there is a concentration (∇2ρ < 0) or a depletion (∇2ρ > 0) of the charge
density in a given region. The AIM classification of interaction is based on the sign of
(∇2ρ) at BCPs. Denoting as closed-shell interactions those with (∇2ρ > 0) and shared
interactions otherwise. Long range interactions are classified as closed-shell interaction
with the AIM criteria, not being possible to differentiate them. Instead of using the
laplacian of ρ, we can consider the accumulation or depletion of density in the plane
perpendicular to the interaction. (∇2ρ) is given by the sum of the three curvatures of ρ,
λ1, λ2, λ3. The last one represents the variation along the internuclear direction and is
the dominant contribution to the laplacian , while λ1, λ2 represent variation in the plane
normal to λ3. Bonding interactions can be identified by the negative sign of λ2, as for
the hydrogen bonds and van der Waals interaction, whereas if atoms are in nonbonded
contact λ2 > 0, as in the case of steric hindrance.

Replacing the plots of s(ρ) by plotting sign(λ2)ρ as the ordinate, the interaction types
may be distinguished.

Figure 3.1: Plots of (a) s(ρ), (b) sign(λ2)ρ, and (bottom) NCI isosurface for phenol dimer.
Blue indicates strong attraction, green indicates very weak interactions, and red
indicates strong repulsion.

For example, the phenol dimer (Fig. 3.1) is a hydrogen-bonded complex, that also
exhibits nonbonding interactions with each benzene ring. The hydrogen bonds are plo-
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tted in the left part of diagram s(ρ), at negative curvatures. By contrast, nonbonding
interactions are plotted at the right part. Weak dispersion interactions between phenol
rings appear as peaks near zero. The NCI isosurfaces are coloured according the nature
of the interaction: blue for strong attractions, green for weak interactions and red for
strong repulsions.

Although NCI index is mainly applied to systems governed by long range interactions,
it has been found that ionic interactions may be successfully studied by NCI [26]

Figure 3.2: NCI for LiF(left) and LiCl(right). Top: s(ρ)), bottom: NCI isosurfaces for various
cutoffs (indicates below each figure). The part of the s(ρ) diagram covered by each
isosurface is highlighted in s(ρ) plot by the corresponding frames.

The s(ρ) diagram for an ionic pair AB show two different decaying curves. This
behavior may be explained in terms of promolecular densities models. As density in
ionic crystals is fairly well described by promolecular densities [27], the density of an
ionic pair at distance R may be modelled as

ρ(r) = ρpromA + ρpromB = ae−αr + beβ(R−r) (3.48)

where (a, α) and (b,β) are positive constants characteristics of A and B ions, respectively.
As r → rA, ρ(r) may be approach as ρA. Then, the reduced density gradient reduces to
free-ion behavior:

s(r → rA) = αρ−1/3 (3.49)

These regions give rise to two curves of behavior y = cx−1/3, being c the displacement
of the curve along the y axis. The constants α and β are associated with the difficulty to
deform, or hardness, of the ions [28]. The change in the slope at medium density observed
in Fig. 3.2 are associated with changes from one shell to another. In the Chapter 6, we
shall explore different covalent bonds by means the reduced density gradient.
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4 Results

4.1 Examples and Computational Details

A bonding analysis based on reduced density matrices and NCI index of several test
cases were carried out. These included closed-shell molecular systems in their electronic
ground state and two open-shell molecules, B2 and O2 in their 3Σ+

u and 3Σ−g ground
states. The closed-shell systems are the homonuclear diatomic molecules A2(A=H,He,Li,
Be,B,C,N,O,F,Ne) and the heteronuclear molecules LiH and the H2O. Additionally a
comparative bonding analysis based on the NCI index was applied to different arrange-
ments of octylamine in gas phase.

Aside from octylamine, all the calculations have used the gamess code to obtain the
wave functions at Hartree-Fock level and different complete active space multiconfigura-
tion calculations (CAS[n,m], n active electrons and m active orbitals: CAS[2,2] for H2,
CAS[4,4] for He2, CAS[4,4] for Li2, CAS[4,4] for Be2, CAS[6,8] for B2, CAS[8,8] for C2,
CAS[10,8] for N2, CAS[12,10] for O2, CAS[14,8] for F2, CAS[16,14] for Ne2, CAS[2,2]
for LiH and CAS[6,10] for the H2O. The standard 6-311G(d,p)++ basis set were used.
A QTAIM real space partition was chosen. The analysis of the wave function was
performed with the promolden code. The numerical integrations in promolden used β-
spheres. Inside the spheres 1000 points Gauss-Chebychev second kind radial quadrature
and a Lebedev angular quadrature with 200 points were used, considering generalized en-
ergy multipoles up to L=4. Outside the spheres a trapezoidal radial quadrature with 800
points and a 6000 angular points Lebedev quadrature were used with generalized energy
mulitipoles up to L=8. All the calculations were performed at the CASSCF equilibrium
geometry. The energies and the electron densities for the arrays of octylamine were cal-
culated at DFT level, with the rPBE [29]functional including Grimme D2 [30] approach
as implemented in the VASP code [31]. Projector Augmented Wave Pseudopotentails
combined to plane waves (cutoff=400ev) represent the electronic distribution.

Reduced density matrices and cumulants needed to performed the NAdOs analysis
has been obtained with the code DENMAT. The NCI analysis were accomplished with
NCIPLOT [32], and critic2 [33] codes

4.1.1 Illustrative Results

Homonuclear Molecules

Tables 4.1 to 4.10 contain 〈Nab〉 and 〈Naa〉 of all the diatomic molecules analysed at
RHF and CASSCF theory levels. It is easy to notice how chemical bonding may be split
into σ and π elements . All the homonuclear molecules examined suffer a decrease of
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0.411 0.005

Figure 4.1: Two-center NAdOs for the H2 molecule.

their delocalization indices, δab = 2〈Nab〉, at correlated level. A deep inspection of the
eigenvalues of each NAdO reveals how correlation acts over chemical bonding. By one
hand, there is a reduction of the eigenvalues of the σ and π NAdOs. On the other hand
, negative eigenvalues are assigned to the NAdOs that emerge from the virtual orbitals
at RHF level.

nabi RHF CAS 〈Nab〉 RHF CAS
nab1 0.5000 0.4114 〈Nab〉 0.4999 0.4164
nab2 0.0049 〈Naa〉 0.4999 0.5835

〈Na〉 0.9999 1.0002

Table 4.1: Two-center eigenvalues (nabi )and 〈Nab〉 population for the H2 molecule.

Let us start with H2. At RHF level, the wave function is formed by one symmetric
MO, 1σg. Consequently, the diagonalization of the DHH matrix leads to one NAdOS
of the same symmetry with an eigenvalue of 0.5. At CAS[2,2] level the wave function
is build from 1σg and 1σu orbitals, leading to one symmetric and one antisymmetric
NAdOs respectively. The former recovers the 98.7% of the delocalization index. Thus,
the single bond picture of H2 bond is given by the 1σg orbital.

Opposite to H2, the bonding in the He2 has been classified as a closed-shell interaction,
giving a delocalization index of only 0.002 at RHF and at CASSCF level. The orbital
picture recovered by the NAdOs resemble us to two noninteracting He atoms. The single-
determinant wave function is not able to describe closed-shell interactions. Including
correlation by means σ orbitals hardly improves the bond descriptions, being necessary
to introduce π components in the wave function.

All the others molecules analysed are formed by elements with two atomic shells,
K and L, and consequently with a core-valence separation. The first two NAdOs of
all the systems analysed emerged form the combination of core MOs 1σg and 1σu ,
yielding a negligible contribution to the bonding and thus leading a core-valence NAdOS
separation. In what follows we are going to focus only in the valence NAdOs.

The first chemically meaningful contribution to the Li-Li bonding is the NAdO 3,
recovering by itself almost 99.9 % of δLiLi at RHF level. Although correlation also

52



nabi RHF CAS 〈Nab〉 RHF CAS
nab1 0.0005 0.0006 〈Nab〉 1.9998 1.9987
nab2 0.0005 0.0006 〈Naa〉 0.0010 0.0012
nab3 -0.000 〈Na〉 1.9999 1.9999
nab4 -0.000

Table 4.2: Two-center eigenvalues (nabi )and 〈Nab〉 population for the He2 molecule.

RHF: 0.0005 0.0005
CAS: 0.0006 0.0006

Figure 4.2: Two-center NAdOs for the He2 molecule.

reduced, nab3 , the change is not so dramatic as in the H2 molecule (0.5000 → 0.4114 in
H2, and 0.5000 → 0.4114),

nabi RHF CAS 〈Nab〉 RHF CAS
nab1 0.0000 0.0000 〈Nab〉 0.4977 0.3139
nab2 0.0000 0.0000 〈Naa〉 2.4977 2.6804
nab3 0.4977 0.4800 〈Na〉 2.9955 2.9943
nab4 0.0163

Table 4.3: Two-center eigenvalues (nabi )and 〈Nab〉 population for the Li2 molecule.

RHF: 0.4977
CAS: 0.4800 0.0163

Figure 4.3: Two-center NAdOs for the Li2 molecule.

Similarly to He2, the bonding in Be2 is a closed-shell interaction. The combination of
the 2s orbitals recovers almost 99.9% of δBeBe. Including the 2pz combinations, leads to
NAdOs with negative contribution, being the sum of 2σ orbitals greater than δBeBe.

B2 is the first open-shell system of the set. Its ground electronic configuration at
ROHF level presents two single occupied π MO, while all the others MO remain doubly
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nabi RHF CAS 〈Nab〉 RHF CAS
nab1 0.0000 0.0000 〈Nab〉 0.0082 0.0075
nab2 0.0000 0.0000 〈Naa〉 3.9900 3.9912
nab3 0.0040 0.0039 〈Na〉 3.9983 3.9912
nab4 0.0042 0.0039
nab5 -0.0001
nab6 -0.0001

Table 4.4: Two-center eigenvalues (nabi )and 〈Nab〉 population for the Be2 molecule.

RHF: 0.0040 0.0042
CAS: 0.0039 0.0039 -0.0001 -0.0001

Figure 4.4: Two-center NAdOs for the Be2 molecule.

occupied. The π elements rise the bond order to two. The asymmetry in the σ-π
population leads to π NAdOs with lightly lower eigenvalues than σ. At CASSCF level
there is a complete σ−π separation, depleting the πg elements and rising the σg NAdOs.
The symmetry respect to the inversion center seems to be also differentiate at correlated
level, breaking the quasidegenaracy of NAdOS 3 and 4. The orbitals 7, 8, 9 and 10
come from the RHF virtual orbitals, and all of them posses negative eigenvalues. The
double bond found at ROHF level, changes to a single bond picture governed by the σ
contributions at CASSCF level.

Adding two electrons to the 2πg of B2, leads to the closed-shell configuration of C2.
At RHF, the σ component plays almost the same role in both systems, but the π
NAdOs contribution rises the C-C bond order to 3.18 . Correlation effects are quite

nabi ROHF CAS nabi CAS 〈Nab〉 ROHF CAS
nab1 0.0000 0.0000 nab9 -0.0007 〈Naa〉 3.9652 4.3357
nab2 0.0000 0.0000 nab10 -0.0010 〈Nab〉 1.0344 0.6648
nab3 0.2672 0.2995 〈Na〉 4.9997 5.0005
nab4 0.2672 0.0199
nab5 0.2499 0.1601
nab6 0.2499 0.1601
nab7 -0.0440
nab8 -0.0007

Table 4.5: Two-center eigenvalues (nabi )and 〈Nab〉 population for the B2 molecule.
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ROHF: 0.2672 0.2672 0.2499 0.2499
CASS: 0.2995 0.0199 0.1601 0.1601

CASS: -0.0440 -0.0007 -0.0007 -0.0010

Figure 4.5: Two-center NAdOs for the B2 molecule.

nabi RHF CAS nabi CAS 〈Nab〉 RHF CAS
nab1 0.0000 0.0000 nab9 -0.0121 〈Naa〉 4.4060 5.1094
nab2 0.0000 0.0000 nab10 -0.0121 〈Nab〉 1.5941 0.8908
nab3 0.2970 0.3375 〈Na〉 6.0002 6.0002
nab4 0.2970 0.0830
nab5 0.5000 0.2696
nab6 0.5000 0.2696
nab7 -0.0427
nab8 -0.0021

Table 4.6: Two-center eigenvalues (nabi )and 〈Nab〉 population for the C2 molecule.

similar in both systems, differentiating between σ and π orbitals and between gerade
and ungerade. Again, the virtual RHF orbitals lead to NAdOs with negative eigenvalue.

The triple bond of N2 at RHF level is clearly described in terms of two π and one σ
bonds. Contrary to C2 and B2, the σ component is governed by the 3σg orbital, instead
of 2σg and 2σu. Once again, the correlation breaks the equilibrium between orbitals 6,4
and 5, differentiating again σ and π components. 6 and 7 eigenvalues changes from 0.50
to 0.29, while the NAdO 5 form 0.5 to 0.38. As in the previous case, all the virtual
orbitals have negative contributions.

Similarly to B2, O2 ground state is a triplet, with a bond order above 2 at single
determinant level. However, the picture is more complex, than in the previous case,
leading a main σ contribution and leaving the πg contribution in the background. There
is a non negligible contribution of πu NAdOs 8 and 9. Contrary to what we have found
in other molecules, there is an important role of NAdO 10, introduced at correlated
level.

F-F bond is by far the most challenging system of the set. Long is the story of this
molecule, widely studied by old VB and MO theories and by the most modern AIM
theory and ELF approaches. Sason Shaik and co-workers has labelled the F-F bond as
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RHF: 0.2970 0.2970 0.5 0.5
CASS: 0.3375 0.0830 0.2696 0.2696

CASS: -0.0427 -0.0021 -0.0121 -0.00121

Figure 4.6: Two-center NAdOs for the C2 molecule.

nabi RHF CAS nabi CAS 〈Nab〉 RHF CAS
nab1 0.0000 0.0000 nab9 -0.0154 〈Naa〉 5.4802 6.0319
nab2 0.0000 0.0000 nab10 -0.0152 〈Nab〉 1.5197 0.9678
nab3 0.5000 0.0120 〈Na〉 6.9999 6.999
nab4 0.0098 0.0228
nab5 0.0098 0.3880
nab6 0.5000 0.2954
nab7 0.5000 0.2954
nab8 -0.0154

Table 4.7: Two-center eigenvalues (nabi )and 〈Nab〉 population for the N2 molecule.

RHF: 0.085 0.5000 0.5000 0.5000
CAS: 0.0120 0.2954 0.2954 0.3880

RHF: 0.0085
CAS: 0.0228 -0.0154 -0.00154 -0.0152

Figure 4.7: Two-center NAdOs for the N2 molecule.

charge-shift bonding [34]. They claimed that the covalent-ionic fluctuation is the source
of the bonding. Turning out to NAdO analysis we found that only the NAdO σ 5 rules
the interaction between F atoms at HF and correlated level. The dramatic change of nab8

from positive to negative value (0.0093(RHF) → -0.0106(CAS)) may be connected with
the special features of the system. More work should be devoted to rationalize negative
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nabi ROHF CAS nabi CAS 〈Nab〉 ROHF CAS
nab1 0.0000 -0.0000 nab11 -0.0079 〈Naa〉 6.8843 7.2302
nab2 0.0000 -0.0000 nab12 -0.0022 〈Nab〉 1.1155 0.7698
nab3 0.0010 0.2451 〈Na〉 7.9999 7.9999
nab4 0.0010 0.0540
nab5 0.5000 0.1160
nab6 0.2738 0.1160
nab7 0.2738 0.0104
nab8 0.0238 0.0104
nab9 0.0238 0.0051
nab10 0.2222

Table 4.8: Two-center eigenvalues (nabi )and 〈Nab〉 population for the O2 molecule.

ROHF: 0.5000 0.010 0.2738 0.2738
CAS: 0.2451 0.0540 0.1160 0.1160

ROHF: 0.0238 0.0238 0.0100
CAS: 0.0104 0.0104 0.0051 0.2222

CAS: -0.0079 -0.0022

Figure 4.8: Two-center NAdOs for the O2 molecule.

eigenvalues.

The picture recovered by Ne2 is quite similar to those obtained for the previous closed-
shell interactions examined. Only combinations of atomic orbitals s, pz, dz2 and z
components in general (internuclear axis are fixed along z direction) are relevant to the
interaction. Contrary to the previous system, 〈Nab〉 increases with the correlation and
consequently, NAdOs 5 and 10, extended along z axis slightly increase its eigenvalues.

Additionally a NCI analysis was also carried out to the same set of molecules at
correlated level. Let us start with the set H2, Be2 and N2 as examples of covalent and
dispersion bonding.
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nabi RHF CAS nabi CAS 〈Nab〉 RHF CAS
nab1 0.0000 -0.0000 nab11 -0.0108 〈Nab〉 0.5543 0.4249
nab2 0.0000 0.0000 nab12 0.0056 〈Naa〉 8.3435 8.5750
nab3 0.0046 0.0244 〈Na〉 8.8978 8.9999
nab4 0.0093 0.0244
nab5 0.0135 0.0243
nab6 0.0135 0.0243
nab7 0.4700 0.0214
nab8 0.0216 -0.0106
nab9 0.0216 0.2902
nab10 0.0314

Table 4.9: Two-center eigenvalues (nabi )and 〈Nab〉 population for the F2 molecule.

RHF: 0.0135 0.0135 0.0216 0.0216
CAS: 0.0244 0.0244 0.0243 0.0243

RHF: 0.0046 0.0093 0.4700
CAS: 0.0214 -0.0106 0.2902 0.0314

CAS: -0.0108 0.0056

Figure 4.9: Two-center NAdOs for the F2 molecule.

As it was mentioned in the theoretical part, the main features of s(ρ) are the zeros at
electron density CPs, and this is what is obtained for the H2 molecule (Fig. 4.11). The
isosurface of s(r) is completely delocalized along the H2 bond. As observed in hydrogen
bonds[35], there is a peak at positive curvatures induced by the density overlap.

Aside from the zero at BCP and at nuclear positions, s(ρ) for Be2(Fig. 4.12) has a
critical point at higher density than the BCP. A deeply analysis of the reduced density
gradient for the Be atom, makes clear that this CP is related with the change from one
atomic shell to another. At low densities s(r) is dominated by the K shell, where at
higher is the L shell the dominant. The s(r) isosurface may be split in two regions with
negative curvature around the Be nuclei and a disc-shaped surface around the BCP with
low curvature. From this picture, the Be2 may be then envisioned as a weak interaction
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nabi RHF CAS nabi CAS 〈Nab...〉 RHF CAS
nab5 0.0011 0.0015 nab14 -0.0001 〈Naa〉 9.9972 9.9962
nab6 0.0000 0.0003 nab15 -0.0001 〈Nab〉 0.0027 0.0037
nab7 0.0000 0.0003 〈Na〉 10.000 10.0000
nab8 0.0000 0.0003
nab9 0.0000 0.0003
nab10 0.0011 0.0015
nab12 -0.0001
nab13 -0.0001

Table 4.10: Two-center eigenvalues (nabi )and 〈Nab〉 population for the Ne2 molecule.

RHF: 0.0011 0.0000 0.0000 0.0000
CASS: 0.0015 0.0003 0.0003 0.0003

RHF : 0.000 0.0011
CASS: 0.0003 0.0015 -0.0001 -0.0001

CAS: -0.0001 -0.0001

Figure 4.10: Two-center NAdOs for the Ne2 molecule.

between two Be atoms placed far away from each other.

As a prototype of multiple bonding let us consider the N2 molecule (Fig. 4.11). s(r)
is quite similar to the H2 , as it is expected for a covalent interaction. The transition
from the K shell to the L atomic shell of N is reproduce at high densities. he higher
values of ρ at the nuclear positions, makes that at s(r)=0.5, the isosurface encloses the
whole molecule.

These three examples clarify how the reduced density gradient can differentiate be-
tween shared-sell interactions (H2 and N2) and closed-shell interactions (Be2). The
former gives isosurfaces extended along the bond, with a peak at positive curvatures
enclosing the BCP of ρ(r). The later lead to disc-shaped isosurfaces , around the BCP,
with near zero curvatures. By contrast s(r) may not be factorized in orbital components,
only being possible to differentiate shared-shell interactions from local analysis of the
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electron density at BCPs. Combining the features observed by the above examples, it
is possible to rationalize the behavior of s(r) for the rest of the set.

Figure 4.11: s(ρ) plots and NCI isosurface of H2 (left) and N2(right). Isosurfaces were
generated at s=0.5 a.u.

Figure 4.12: Top: s(ρ) and s(r) plots of Be. Bottom: s(ρ) plots and NCI isosurface
(s=0.5 a.u.) of Be2 .

Non nuclear maximum of Li2 [36],[37], yields a s(r) isosurface completely different
from the above systems(Fig. 4.11). The overlap between densities is much weaker,
yielding a peak at positive curvature close to zero. B2 and C2 looks similar to N2, not
being possible to distinguish the different bond orders. He2 and Ne2 recover the same
closed-shell picture as Be2, as it is expected.
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Table 4.11: s(ρ) plots and NCI isosurface (s=0.05 a.u.) of Li2

The bonding in the O2 and in the F2, merges many properties of of the N2 and
the closed-shell interaction of Be2. The charge-shift character of this two bonds may
then be easily grasped by NCI. As reported in the work of Shaik [34],[38] the sum of
electronegatives is closely related with the charge-shift character, increasing form the C2

to the F2, following the same trends as the bumps of the s(r) isosurface. The additional
CPs of s(ρ) give rise to a more remarkable atomic character than N2. The absence of
such CPs in He2, Li2, B2, C2 and N2 may be rationalized as a non-neglible missing of
the valence atomic shell (K for He, and L for the others).

Figure 4.13: s(ρ) plots and NCI isosurface (s=0.5 a.u.) of B2 (left) and C2(right)
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Table 4.12: s(ρ) plots and NCI isosurface (s=0.5 a.u.) of O2 (left) and F2(right)

Heteronuclear Molecules

Leaving homonuclear molecules, the change induced by the polarity in the bonding were
also analysed. LiH and H2O (Tables 4.13 and 4.14) were examined as example of
ionic and covalent compounds respectively. As is expected, the delocalization indices
decrease in order H2O ,LiH. 〈 Nab 〉 in the two examples is almost recovered by only
one eigenvalue, 94%, 98% and 93% and 94% in the RHF(CAS) calculation of LiH and
H2O respectively, confirming that, Li-H and O-H bonds are single two-center, two-single
(2c,2e) bonds [13]. (Figs 4.16). Regarding the effects of the correlation, different trends
are observed depending on the nature of the interaction. As a close-shell interaction
〈NLiH〉 increases, through a increase of 〈NLiLi〉 and a decrease of 〈NHH〉. By contrast,
〈NOH〉 decreases in favour of 〈NHH〉 and 〈NOO〉.

nabi RHF CAS 〈Nab〉 RHF CAS
nab1 0.0060 0.0060 〈Naa〉 1.9932 1.998
nab2 0.098 0.1132 〈Nbb〉 1.7945 1.7672
nab3 -0.0038 〈Nab〉 0.1048 0.1155

〈Na〉 2.0984 2.1139
〈Nb〉 1.8993 1.8828

Table 4.13: Two-center eigenvalues (nabi )and 〈Nab〉 population for the LiH molecule.
Labels a, b are for Li and H respectively

The NCI analysis also reveals a number of differences among two molecular systems.
As it was explained in the Chapter4, and the ionic character of LiH, yields to two
different curves in the s(ρ) representation. Since Li cation is harder than the hydride,
the Li+ curve is over the hydride curve. The anionic behavior of the H may be grasped
from the CP of the hydride curve, not present in the H2 (Fig 4.11). By contrast, the
covalent character of O-H bond, leads to a single curve. As the polarity of the bond
decreases, the promolecular density model is no longer valid and, thus a single curve is
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RHF: 0.098
CASS: 0.1132

Figure 4.14: Two-center NAdOs of the LiH molecule. The purple atom represents the
Li, and the white the H.

nabi RHF CAS nabi CAS 〈Nab〉 RHF CAS
nab1 0.0000 0.0000 nab9 0.0003 〈Naa〉 8.5434 8.5722
nab2 0.0021 0.0081 nab10 0.0006 〈Nbb〉 0.0718 0.0980
nab3 0.3046 0.0293 nab11 -0.0000 〈Nab〉 0.3263 0.3020
nab4 0.0075 0.0197 〈Na〉 8.8697 8.8742
nab5 0.0120 0.2839 〈Nb〉 0.3981 0.3101
nab6 -0.0062
nab7 -0.0167
nab8 -0.0171

Table 4.14: Two-center eigenvalues (nabi )and 〈Nab〉 population for the H2O molecule.
Labels a and b are for O and H respectively.

RHF: 0.0120 0.0075 0.3046
CASS: 0.0293 0.0197 0.2839 -0.0167

CASS: -0.0171

Figure 4.15: O-H NAdOs of the H2O molecule.

observed. Similar to the O2 (Fig 4.12), there is a remainder atomic shell structure of
the oxygen.

The NCI isosurfaces place a disc-shaped isosurfaces appear between the Li and the
H, encapsulating the H at higher values(Fig. 4.17). By contrast, H2O (Fig. 4.16) are
delocalized along the O-H bond. Since the BCP is closer to the hydrogen atom, the
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Figure 4.16: s(ρ) of (left) LiH,(right) H2O.

isosurfaces grow from it toward the lithium atom. Qualitatively the picture offered by
NCI coincides with the shape of the main NAdO of O-H and Li-H bonds.

s=0.55 s=0.8

s=0.3 a.u. s=0.5 a.u.

Figure 4.17: NCI isosurfaces for various cutoffs.(Top) LiH, (bottom) H2O.

Long-range interactions

Once strong short-range interactions has been deeply investigated, we will focus in a
weaker kind of interactions, already shown in He2, Ne2 , the so-called, noncovalent in-
teractions. Many biological and extended systems, such as proteins, molecular solids,
polymers ..., are stabilized through these long-range interactions. Although both bond-
ing analysis above employed, NAdOs and NCI analysis, are perfectly valid to describe
these interactions, the latter has been widely accepted by the community, whereas the
application of the former to extended systems remains unexplored. To understand how
NCI index reveals many insights of the noncovalent interactions in extended systems,
we consider the prototypical example of octylamine self-assembly monolayers (SAMs).
SAMs systems are formed by long alkyl molecules forming a two dimensions layer bind
to a metallic surface. The stabilization of these system comes from the intermolecular
interactions between the alkyl chains. To understand the nature of these interactions
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we have compared the NCI isosurfaces of a 2 dimension polymer of octylamine with two
linear polymers through different directions.

Figure 4.18: NCI isosurfaces of the x-polymer (left), the y-polymer (center) and the 2
dimension polymer. Only the monomers are plotted. The linear polymers
grow in the plane. The interactions along different directions are labelled by
arrows in the 2 dimension polymer. The additional interactions is labelled
as ?.

The x-polymer shows a NCI isosurface completed delocalized along the chains( Fig
4.18). There are a direct interaction between the hydrogen atoms of different monomer
in the y-polymers. This interaction leads to a round isosurfaces located between each
pair of hydrogen atoms. Although many sistems with destabilizing H-H interaction
were reported, these interactions makes the y-polymer more stable than the x-polymer
(Fig 4.19). Aside of all these interactions, the 2 dimension polymer isosurface reveals
an additional interactions giving rise to an hexagon-shape isosurfaces around each H-H
interaction along y direction, which leads to its stabilization respect the linear polymers.

Figure 4.19: (Left) Interaction energies per monomer of octylamine (Eint)for x and y
polymers versus the distance between the chains (dNN). (Right)(Eint) of
the 2D polymers and the sum of the x and y polymers.
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5 Conclusiones

El objetivo de esta memoria es explorar el enlace qúımico en el espacio real mediante
dos técnicas de vanguardia que a d́ıa de hoy apenas han sido explotadas. Algunas de las
conclusiones que se pueden extraer de este trabajo son:

1. Los ı́ndices de deslocalización resultan ser el principal nexo de unión entre los relati-
vamente modernos análisis del enlace qúımico en el espacio real y los tradicionales
órdenes de enlace definidos en un espacio orbital, permitiendo clasificar cuanti-
tavamente los diferentes tipos de enlace. La partición de la densidad electrónica
utilizando cuencas de Bader y la posterior factorización de dichas particiones,
permiten recuperar el lenguaje orbital a partir de funciones definidas en el espa-
cio real, como son los orbitales naturales adatativos. Los NAdOs permiten des-
glosar los ı́ndices de deslocalización en contribuciones monoelectrónicas, pudiendo
racionalizar el enlace qúımico en términos de componentes π y σ , tan arraiga-
dos en el lenguaje de la qúımica. A lo largo de este trabajo únicamente se han
examinado los NAdOs precendentes de particiones de dos centros de la densidad
electrónica, extender este análisis a particiones multicéntrica podŕıa conducir a
una mayor comprensión de algunos de los principales retos de la qúımica teórica,
como son la aromaticidad y el enlace multicéntrico.

2. El gradiente densidad de reducido permite caractérizar el enlace qúımico en ter-
minos de interacciones de capa cerrada y capa abierta. Los multiples sistemas
examinados a lo largo de esta memoria, aśı como otros muchos ya publicado, reve-
lan la capacidad de s para diferenciar interacciones covalentes de interacciones de
capa cerrada como son las enlaces iónicos o las débiles interacciones presentes en
sistemas tales como He2 o Be2. La definción de s(r) imposibilita una descomp-
soción orbital similar a los NAdOs, conduciendo a una descripción superficial del
enlace. Sin embargo, los análisis basados en el gradiente densidad, tales como NCI,
son especialmente útiles para analizar interacciones débiles, en muchos casos no
caracterizadas mediante análisis de otros campos escalares tales como la densidad
electrónica o la ELF, y por lo tanto haciéndolo más apropiado para el estudio de
estas interacciones presentes en muchos sistemas de interés biológico.

3. Mediante el análisis de los NAdOS y del gradiente densidad reducido, es posible
abarcar todo tipo de enlace, desde las fuertes interacciones covalentes, hasta las
débiles interacciones de dispersión. Una futura combinación de ambos métodos
podŕıa abrir las puertas a un análisis topológico del enlace en sistemas más realistas
que los que se han tratado.
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6 Appendix

Efficient computation of ρnC ’s depends on simple algorithms to obtain their algebraic
expressions. One of the most efficient starts by recalling that the rth central moment ρr
of a probability distribution function f(x) is the rth derivative of its moment generating
function M(ξ) = E(eξx). The cumulants cr are the coefficients in the Taylor expansion
of the generating function lnM(ξ), i.e. lnM(ξ) =

∑∞
r=0 crξ

r/r!. A closed form that
gives the cl’s in terms of the first l moments is

cl = (−1)l+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ1 1 0 0 0 0 . . . 0
ρ2 ρ1 1 0 0 0 . . . 0
ρ3 ρ2

(
2
1

)
ρ1 1 0 0 . . . 0

ρ4 ρ3

(
3
1

)
ρ2

(
3
2

)
ρ1 1 0 . . . 0

ρ5 ρ4

(
4
1

)
ρ3

(
4
2

)
ρ2

(
4
3

)
ρ1 1 . . . 0

...
...

...
...

...
. . . . . .

...

ρl−1 ρl−2 . . . . . . . . . . . .
. . . 1

ρl ρl−1 . . . . . . . . . . . . . . .
(
l−1
l−2

)
ρ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.1)

When this determinant is algebraically computed, cl is given by a sum of Nl terms of
the form dkρ

p1
s1
ρp2s2 . . . ρ

pnk
snk

, being Nl equal to the number of forms in which l can be
decomposed into a sum of positive integers. These terms for l = 1 . . . 9 are collected in
Table 6.1.

Each of them satisfies
∑nk

i=1 si × pi = l. The dk’s in Table 6.1 are not directly those
resulting from the expansion of determinant 6.1. They have been modified as follows in
order that the cl’s satisfy the recursivity and normalization properties of cumulants: i)
If the coefficient of ρl1 (always present) is negative we change the sign of all the dk’s. ii)
We divide each dk by the coefficient of the term ρl1. iii) We divide further each dk by
the factor l!/[Πk

i=1pi!(si!)
pi ]. This last normalization is pertinent because each ρp1s1ρ

p2
s2
. . .

term in Table 6.1 must be replaced by its symmetrized expression. For instance, the term
ρ2

1ρ2 that appears for l = 4 must be replaced by ρ1(1)ρ1(2)ρ2(3, 4) + ρ1(1)ρ1(3)ρ2(2, 4) +
ρ1(1)ρ1(4)ρ2(2, 3) + ρ1(2)ρ1(3)ρ2(1, 4) + ρ1(2)ρ1(4)ρ2(1, 3) + ρ1(3)ρ1(4)ρ2(1, 2), so that
ρ2

1ρ2 actually has 4!/[2!1!(1!)2(2!)1] = 6 components.
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Table 6.1: Cumulant of orders 1 . . . 9. The number of terms appears in parenthesis.

l = 1 (1)
ρ1

1
l = 2 (2)

ρ2
1 ρ2

1 -1
l = 3 (3)

ρ3
1 ρ1ρ2 ρ3

1 -1/2 1/2
l = 4 (5)

ρ4
1 ρ2

1ρ2 ρ1ρ3 ρ4 ρ2
2

1 -1/3 1/6 -1/6 1/6
l = 5 (7)

ρ5
1 ρ3

1ρ2 ρ2
1ρ3 ρ1ρ4 ρ1ρ

2
2 ρ2ρ3 ρ5

1 -1/4 1/12 -1/24 1/12 -1/24 1/24
l = 6 (11)

ρ6
1 ρ4

1ρ2 ρ3
1ρ3 ρ2

1ρ4 ρ2
1ρ

2
2 ρ1ρ2ρ3 ρ1ρ5 ρ2

3

1 -1/5 1/20 -1/60 1/20 -1/60 1/120 1/120
ρ6 ρ2ρ4 ρ3

2

-1/120 1/120 -1/60
l = 7 (15)

ρ7
1 ρ5

1ρ2 ρ4
1ρ3 ρ3

1ρ4 ρ3
1ρ

2
2 ρ2

1ρ2ρ3 ρ2
1ρ5 ρ1ρ

2
3

1 -1/6 1/30 -1/120 1/30 -1/120 1/360 1/360
ρ1ρ6 ρ1ρ2ρ4 ρ1ρ

3
2 ρ3ρ4 ρ2

2ρ3 ρ2ρ5 ρ7

-1/720 1/360 -1/120 -1/720 1/360 -1/720 1/720
l = 8 (22)

ρ8
1 ρ6

1ρ2 ρ5
1ρ3 ρ4

1ρ4 ρ4
1ρ

2
2 ρ3

1ρ2ρ3 ρ3
1ρ5 ρ2

1ρ
2
3

1 -1/7 1/42 -1/210 1/42 -1/210 1/840 1/840
ρ2

1ρ6 ρ2
1ρ2ρ4 ρ2

1ρ
3
2 ρ1ρ3ρ4 ρ1ρ

2
2ρ3 ρ1ρ2ρ5 ρ1ρ7 ρ2ρ

2
3

-1/2520 1/840 -1/210 -1/2520 1/840 -1/2520 1/5040 -1/2520
ρ3ρ5 ρ8 ρ2ρ6 ρ2

2ρ4 ρ2
4 ρ4

2

1/5040 -1/5040 1/5040 -1/2520 1/5040 1/840
l = 9 (30)

ρ9
1 ρ7

1ρ2 ρ6
1ρ3 ρ5

1ρ4 ρ5
1ρ

2
2 ρ4

1ρ2ρ3 ρ4
1ρ5 ρ3

1ρ
2
3

1 -1/8 1/56 -1/336 1/56 -1/336 1/1680 1/1680
ρ3

1ρ6 ρ3
1ρ2ρ4 ρ3

1ρ
3
2 ρ2

1ρ3ρ4 ρ2
1ρ

2
2ρ3 ρ2

1ρ2ρ5 ρ2
1ρ7 ρ1ρ2ρ

2
3

-1/6720 1/1680 -1/336 -1/6720 1/1680 -1/6720 1/20160 -1/6720
ρ1ρ3ρ5 ρ1ρ8 ρ1ρ2ρ6 ρ1ρ

2
2ρ4 ρ1ρ

2
4 ρ1ρ

4
2 ρ3

3 ρ3ρ6

1/20160 -1/40320 1/20160 -1/6720 1/20160 1/1680 1/20160 -1/40320
ρ2ρ3ρ4 ρ3

2ρ3 ρ4ρ5 ρ2
2ρ5 ρ2ρ7 ρ9

1/20160 -1/6720 -1/40320 1/20160 -1/40320 1/40320
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