
Soft Margin Trees

Jorge Dı́ez, Juan José del Coz, Antonio Bahamonde and Oscar Luaces

Artificial Intelligence Center. University of Oviedo at Gijón, Asturias, Spain
www.aic.uniovi.es

Abstract. From a multi-class learning task, in addition to a classifier,
it is possible to infer some useful knowledge about the relationship be-
tween the classes involved. In this paper we propose a method to learn a
hierarchical clustering of the set of classes. The usefulness of such cluster-
ings has been exploited in bio-medical applications to find out relations
between diseases or populations of animals. The method proposed here
defines a distance between classes based on the margin maximization
principle, and then builds the hierarchy using a linkage procedure. More-
over, to quantify the goodness of the hierarchies we define a measure.
Finally, we present a set of experiments comparing the scores achieved
by our approach with other methods.

1 Introduction

In many Machine Learning and Data Mining applications, users are not only
interested in learning good classifiers but also in gaining some insight into the
application domain. This is the case, for instance, of learning techniques for
association rule, clustering or feature selection.

Given a dataset of labeled examples, in this paper we present a method to
cluster the set of classes. This learning task has received little attention in the
literature; typically, clustering deals with examples instead of classes. However,
once we have classes attached to examples, their clusters draw valuable informa-
tion about the similarities and differences between classes.

In Medicine, [1, 2] report methods for clustering SAGE (Serial Analysis of
Gene Expression) data to detect similarities and dissimilarities between differ-
ent types of cancer on the subcellular level. There are also many interesting
applications in Genetics of Populations. The aim is to discover relationships be-
tween species or breeds according to their genetic descriptions. Thus, [3] studied
50 indigenous cattle breeds from Africa; [4] clustered a total of 1272 termites
representing 56 genetically distinct colonies in central North Carolina; [5] inves-
tigated the genetic structure and variation of 21 populations of cattle in northern
Eurasia and the neighbouring Near Eastern regions; [6], in order to facilitate the
assessments of epidemiological risks, showed the genetic structure of human pop-
ulations using genotypes at 377 autosomal microsatellite loci in 1056 individuals
from 52 populations.

Roughly speaking the clustering of classes has been faced in two ways. The
straightforward approach represents each class using a single feature vector, usu-

ally the centroid of the examples of the class in the input space [7]. Then, the col-
lection of these vectors is clustered using algorithms as k-means, Self-Organized
Maps [8] or a hierarchical clustering. The main drawback of this approach is
that representing a class by a single vector may imply an important loss of
information.

The second approach proceeds in two stages. First, a clustering is obtained
using the complete dataset of individual examples. Then, in an ad hoc way, the
users analyze the groups so obtained. Typically, the individual examples are
represented in a 2-D map using visualizations tools like Self-Organized Maps
[9, 10, 1]; from this map an application-specific discussion infers a graph that
represents the relationship between classes [11]. Using these types of methods,
knowledge discovery depends heavily on the capability of users to interpret the
clustering of individual examples. Using this approach, it is a difficult task to
find the true relationship between all classes of a classification task.

The method proposed in this paper builds a hierarchical clustering [12] of
the set of classes. The core idea is to define a metric between classes. Given that
the starting data is a classification learning task, the metric of classes is defined
from a bundle of binary classifiers. Then an agglomerative hierarchical clustering
method will provide a binary tree or dendrogram with classes placed at leaves.
The dendrogram can be broken at different levels to yield different clusterings
of the set of classes.

The organization of the classes so learned is a meaningful tree that will be
easily interpreted by an expert of the domain. Figure 1 depicts the relationships
of classes of the well-know led dataset. Notice that the topmost split of classes
separates those that share the bottom led (left hand side) from those in which
that led is off, classes 1, 7, and 4. As one could hope, the closest classes are the
groups {8, 0}, {5, 9, 6}, {1, 7}, and {2, 3}.

The organization of the paper is the following. In the next section we present
an overview of related work. Then, we introduce the central idea of the paper, the
definition of the distance of classes that uses an algorithm based on the margin-
maximization principle. Additionally, we present a measure to compare different
hierarchical clusterings of classes. In Section 5, we report some experimental
results supporting our approach. We shall show that our method is able to
build meaningful hierarchical clusters of classes, significantly better than those
produced by other methods. We close the paper drawing some conclusions.

2 Related Work

There are two kinds of related work. The papers that present biomedical appli-
cations, quoted in the Introduction, describe mainly ad hoc methods to cluster
the set of classes. On the other hand, there are a number of approaches that
build clusters trying to assemble multi-class classifiers based on Support Vector
Machines (SVM) [13]. This section is devoted to explain the relation of these
papers with the method presented here.

5 9 6 2 3 8 0 1 7 4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 1. Hierarchical clustering of classes obtained on led dataset. This domain contains
7 boolean attributes, representing the 7 light-emitting diodes, and 10 classes, the set
of decimal digits. To make the task more difficult, the problem has some noise. Each
attribute value has the 10% probability of having its value inverted.

First of all, let us recall that there are two types of approaches for multi-class
classification using SVM. One is considering all data in a single optimization
problem [14, 15]. The other is decomposing the multi-class task into a series
of binary SVMs, such as One-vs-All (OVA) [13], One-vs-One (OVO) [16], and
using a directed acyclic graph (DAG) [17]. As none of these methods significantly
outperforms the others, this is an active research subject.

Lately, some authors [7, 18–20] have proposed decomposition algorithms which
follow a similar approach: learn a decision tree (a special case of DAG) based on
a hierarchy of classes. First, these methods build a dendrogram of classes; and
then, a binary SVM is learned for each internal node of that hierarchy in order
to separate the examples of each subset of classes (see Figures 1 and 2). The
classification procedure goes from the root to leaves guided by the predictions of
SVMs classifiers at internal nodes. All these methods basically differ in the way
they build the hierarchy of classes.

In [7] the authors propose a method to construct a binary tree. It proceeds
top-down, and at each node it uses a k-means clustering of the centroids of classes
to divide the set of classes into two groups.

In [19] the authors present the so called Dendrogram-based Support Vector
Machines (DSVM). In order to build the dendrogram, DSVM computes the
centroid of each class, and then uses an agglomerative hierarchical algorithm.
We shall include this method in the Experimental Results section.

In [18], the algorithm Half-Against-Half (HAH) is presented. After some dis-
cussion about different methods to build the hierarchy structure (generating it

at random or using prior knowledge), the authors propose to use a hierarchical
clustering algorithm based on the mean distance between classes. Since the au-
thors do not state clearly the concrete hierarchical clustering algorithm used, we
shall not include this method in Section 5.

However, the work that inspired this paper is [20]. In fact, our approach can
be seen as a generalization of it. The authors present a multi-class classifier for
high-dimensional input spaces, called Margin Trees Classifier, that achieves an
accuracy comparable to that of OVO SVM on 7 cancer microarray data sets. The
algorithm is somehow similar to those cited before since it uses a hierarchy of
classes to build a decision tree classifier. The authors report a study comparing
different procedures to build the hierarchy: complete linkage, single linkage and
a greedy algorithm. They conclude proposing the complete linkage.

However, the main idea introduced by Tibshirani and Hastie is that they use
the margin to compute the distance between two classes. In their approach, the
dimension of the input space is always greater than the number of examples.
Therefore, all classes are separable. In the next section we present a generaliza-
tion to the non-separable case of this method, applying the basic principles of
margin maximization.

In our opinion, another important contribution of [20] is that the authors are
the first to remark the additional interpretability of the model obtained in bio-
logical tasks. Despite they describe their method only as a multi-class classifier,
they also point out the utility of the cluster of classes in real applications. In
this paper we want to explore this idea and we shall focus in the method as a
clustering of classes.

3 Soft Margin Trees

Let X be an input space, and Y = {C1, ..., Ck} a finite set of classes. We consider
a multi-classification task given by a training set S = {(x1, y1), . . . , (xn, yn)}
drawn from an unknown distribution Pr(X,Y) from the product X ×Y. Within
this context, our learning task is to build a dendrogram T in which each class
labels exactly one leave, T has k leaves, and k − 1 internal nodes.

In Figure 1 you can see the dendrogram obtained applying the method de-
scribed here to the led dataset [21]. Here, y-axis represents the distance between
clusters grouped together.

In order to define an algorithm for agglomerative hierarchical clustering we
require two elements:

1. A linkage scheme to recalculate inter-cluster distances when the two most
similar or near clusters are merged.

2. A method to calculate a symmetric dissimilarity matrix D based on pairwise
dissimilarities or distances. The value in the l -th row, m-th column is the
distance between classes Cl and Cm. Notice that it will be necessary to apply
this method

(
k
2

)
times to calculate D.

In the following subsections we describe our proposals in these elements of
the method for clustering classes.

3.1 Linkage method

An agglomerative hierarchical clustering algorithm starts defining one cluster
for each class. Then, the algorithm proceeds iteratively joining together (linking)
the two closest clusters. Differences between linkage methods arise from different
ways to define distances between clusters. Thus, using different linkage methods
can produce different dendrograms. Here, due to the lack of space, we can not
study the effect of using different linkage methods.

Following the conclusions drawn by [20], we shall use the complete linkage
method. In their experimental results all methods produce the same accuracy,
but complete linkage gives rise to more balanced trees. This kind of trees are more
interpretable than those obtained by other methods. In the experiments reported
in Section 5 all hierarchical clustering algorithms compared use the complete
linkage method. They only differ in the way they compute the dissimilarity
matrix.

3.2 A margin-based metric for classes

In [20], the distance between two separable classes is defined as the margin
between them. To compute the distance between classes Cl and Cm, the class
labels (yi) of the examples of those classes are relabeled (y′i) as +1 and −1,
respectively. The hyperplane of maximum margin that separates the nearest
examples of those classes is defined by a weight vector w and a bias b that can
be obtained solving the following optimization problem:

(w, b) = argmax
‖w‖=1

(M) (1)

s.t. y′i(〈w,xi〉+ b) ≥M, ∀(xi, yi) ∈ Cl ∪ Cm.

Finally, in Margin Trees, the distance between classes Cl and Cm is the
margin:

D(l,m) = 2 ·M. (2)

Actually, the optimization problem in Equation 1 is equivalent, see for in-
stance [22, 23], to a typical hard-margin SVM formulation:

min
1
2
||w||2 (3)

s.t. y′i(〈w,xi〉+ b) ≥ 1, ∀(xi, yi) ∈ Cl ∪ Cm.

In this case, the margin between both classes is equal to:

D(l,m) =
2
||w||

. (4)

Our proposal is to use a soft-margin SVM formulation instead of a hard-
margin one:

min
1
2
||w||2 + C

∑
∀yi∈Cl∪Cm

ξi, (5)

s.t. y′i(〈w,xi〉+ b) ≥ 1− ξi,
ξi ≥ 0, ∀(xi, yi) ∈ Cl ∪ Cm,

where C is a regularization parameter. The distance between classes Cl and Cm

is defined by the following expression:

D(l,m) =
1

1
2 ||w||2 + C

∑
∀yi∈Cl∪Cm

ξi
. (6)

The idea is that when classes are very different, the classifier will be given
by a simple model (i.e., ||w|| will be low) and/or the number of misclassified
examples or points inside the margin will be small (

∑
ξi → 0), so the distance

(Equation 6) will be high. When classes are similar, the model will be complex
(the norm of weight vector will be high) and/or there will be a lot of misclassified
examples or points inside the margin (

∑
ξi � 0); in this case the distance will

be small. Thus, the optimization problem in Equation 5 minimizes an expression
that captures faithfully the differences between two classes.

It must be noted that, in order to ensure that all distances of matrix D share
an identical scale, the regularization parameter C must be the same in the

(
k
2

)
SVM binary classifiers needed to calculate all pairwise distances.

The differences between distances of Margin Trees and those proposed in
this paper may be quite subtle in linearly separable cases. Then, both depend
only on the norm of weight vectors, but these vectors may differ. However, in
general, our metric has a couple of advantages over that of Margin Trees: 1) it
can be applied to non-separable problems, and 2) even in a separable case, the
soft-margin approach can find a different solution because it takes into account,
at the same time, the complexity of the model and the expected loss. In fact,
these are the same benefits that can be obtained using the soft margin approach
instead of the hard margin in traditional SVM.

Figure 2 shows these ideas. There are some examples in a 2-dimensional space
labeled in four classes linearly separable. At a first glance, it seems that there are
two groups of classes: {1,3} and {2,4}. Applying the Margin Trees algorithm (left
side panel), Equations 1 or 3, the two most similar classes are 1 and 2; a couple
of outlayers make the hard margin quite small. The separating hyperplane and
margin frontiers are displayed in Figure 2. On the other hand, our method (right
side panel), Equation 5, takes advantage of the possibility to misclassify some
examples or to place them inside the margin. Therefore, the method proposed
in this paper captures the relationship between those classes better than Margin
Trees.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

1

11

1

1

1

1

1

1

11
1

1

1

1
1

11
1

1

2

2

2

2

2

2

2

2

2

2
2 2

2 2
2
2

2
2

2

2

3

3

3

3

3

3

3

3

33

3

3

3

3 3

3

3

3
33

4

44 4
44

4

4
4

44 4

44
4

4

4
4

4

4

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

1

11

1

1

1

1

1

1

11
1

1

1

1
1

11
1

1

2

2

2

2

2

2

2

2

2

2
2 2

2 2
2
2

2
2

2

2

3

3

3

3

3

3

3

3

33

3

3

3

3 3

3

3

3
33

4

44 4
44

4

4
4

44 4

44
4

4

4
4

4

4

1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 2 4

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Example of a Margin Tree (left panel) and a Soft Margin Tree (right panel).
Separating hyperplanes and hierarchical clustering of classes are displayed. The method
proposed in this paper captures the relationship between those classes better than
Margin Trees.

4 A method and a metric to compare hierarchical
clustering of classes

A very important aspect of learning methods is to measure the quality of the
obtained knowledge. In supervised learning this task is accomplished by a set of
well established metrics. They allow users to compare different techniques and to
estimate the future performance of predictive models. But unsupervised learning
algorithms, like clustering, are difficult to compare.

The learning task of clustering a set of classes is an unsupervised task, we do
not know the correct organization of classes. However, we can take advantage of
having a dataset with examples labeled by those classes.

Given a hierarchical clustering of k classes, as was mentioned in Section 2,
it is possible to build a classifier learning k− 1 binary SVMs. Let h : X → Y be
such a classifier. A first approach to define a metric for the quality of clusterings
of classes could be to measure the accuracy of h. In fact, if the hierarchy is good,
the accuracy of h must be high.

Table 1. Description of the datasets used in the experiments. They are divided in two
parts. The first is a collection of classification tasks non-linearly separable drawn from
the UCI repository [21]. The second part are cancer datasets that were previously used
in [20].

Dataset #classes #examples #features

zoo 7 101 16
glass 6 214 9
ecoli 8 336 7
dermatology 6 366 33
vehicle 4 846 18
vowel 11 990 11
led 10 1000 7
yeast 10 1484 8
car 4 1728 6
image 7 2310 19
landsat 6 6435 36

brain 5 42 5597
lymphoma 3 62 4026
srbct 4 63 2308
stanford 14 261 7452
9 tumors 9 60 7131
11 tumors 11 174 12533
14 tumors 14 190 16063

But this is an incomplete view of the problem. It is more important to study
what happens when the classifier fails, than to calculate only the accuracy. A
hierarchical clustering of classes represents the similarity between those classes.
When h missclassifies an example xi, if the hierarchy is good, the predicted class
h(xi), must be near (in the hierarchy) to the true class yi .

Therefore, we propose to measure the distance in the hierarchy between pre-
dictions and true classes; that is, the number of arcs in the dendrogram T placed
between the leaves labeled by those classes. We called this measure Prediction
Distance (PD):

PD(h(xi), yi, T) = #arcs(h(xi), yi, T). (7)

For instance, the Prediction Distance of an example of class 5 (see Figure 1)
classified as class 9 is 2, but if prediction were class 2, PD would rise to 5. The
farthest classes from class 5 are 1 and 7, both at distance 8. Notice that the
maximum distance between two classes in a dendrogram of k classes is k.

Averaging this metric over a set of test examples we shall measure the good-
ness of a hierarchy T .

5 Experimental results

In order to evaluate the benefits of our approach we conducted a battery of
experiments. The aim is to show that our approach is able to build meaningful
hierarchical clusters of classes, significantly better than those produced by other
methods.

As it was indicated in Section 3.1, each algorithm for hierarchical clustering
employed in the experiments used the complete linkage method to build the
tree. Therefore, the differences between the algorithms arise from the way they
compute the matrixes of distances between each pair of classes. We considered
four approaches:

– Random. A random symmetrical distance matrix is computed. Since PD is
an unbounded measure, we used Random method to obtain an upper bound
on all datasets. It is expected that the other approaches perform significantly
better.

– DSVM [19]. Dendrogram-based Support Vector Machines computes the dis-
tance matrix by means of the Euclidean distance between the centroids of
each pair of classes.

– Margin Trees (MT). The distance matrix is computed using the Margin
Trees idea from [20], showed in Equations 3 and 4.

– Soft Margin Trees (SMT). The distance matrix is computed applying Equa-
tions 5 and 6.

Once we have built a hierarchical clustering of classes, a multi-class classifier
may be learned with a binary SVM attached to each internal node. We shall
report the accuracy of these classifiers (“0/1” errors) in addition to the Prediction
Distance (PD) (Equation 7). Although the quality of the trees can be measured
only by means of the prediction distance, we include the accuracy to compare
their predictive power with the SVM multiclass.

The datasets used in the experiments are described in Table 1. There are
datasets with more number of examples than features and vice versa. The first
group is formed by datasets obtained from the UCI repository [21]. We selected
those datasets that fulfill the following rules: continuous or ordinal attribute
values, no more than 40 attributes, no more than 10000 examples, and excluding
datasets with missing values and with less than 4 classes. The second group is
composed by the datasets used in [20]. They are 7 datasets which target is to
classify cancer patients from gene expressions captured by microarrays.

All the scores reported were estimated by means of a 5-fold cross validation
repeated 2 times. We did not use the 10-fold procedure, since in certain datasets
there are too few examples in some classes. The SVM implementation used was
libsvm [24] with the linear kernel in all cases. Cancer datasets can be separated
by a linear-SVM, so the utility of using different kernels it is not clear.

For each hierarchical system considered (Random, DSVM, MT and SMT),
we used the same regularization parameter C in all models learned at each node
in the tree. To select this parameter, we utilized a 2-fold cross validation repeated
5 times on training data searching within C ∈ [10−2, . . . , 102]. The aim in this

Table 2. Cross validation results both in “0/1” errors and PD.

SVM Random DSVM MT SMT
Dataset 0/1 0/1 PD 0/1 PD 0/1 PD 0/1 PD

zoo 4.98 5.48 0.2336 4.50 0.2750

M
T

cl
a
ss

ifi
er

o
n
ly

w
o
rk

s

w
it

h
se

p
a
ra

b
le

d
a
ta

se
ts

4.98 0.1788
glass 33.20 40.44 1.7156 35.76 1.1292 37.40 1.1502
ecoli 11.75 16.58 0.6888 14.01 0.3873 13.71 0.3782
dermatology 3.55 3.14 0.1312 4.36 0.1036 3.82 0.0928
vehicle 20.33 22.99 0.7400 20.63 0.4817 20.63 0.4805
vowel 19.19 54.60 3.2303 26.77 1.1354 29.70 1.3449
led 27.70 36.95 2.0790 27.80 1.1950 27.95 1.1860
yeast 41.61 46.36 2.2685 42.79 1.4340 43.43 1.3672
car 14.35 19.50 0.6754 15.11 0.4751 17.30 0.4161
image 4.07 12.53 0.5890 10.13 0.3812 4.29 0.1126
landsat 13.05 18.91 0.7876 14.96 0.5829 13.18 0.4051

brain 13.19 14.44 0.5278 14.58 0.5611 13.33 0.5125 13.33 0.5125
lymphoma 0.00 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000
srbct 1.60 1.60 0.0564 0.83 0.0167 0.83 0.0250 0.83 0.0250
stanford 5.36 5.35 0.3759 6.12 0.2700 5.93 0.3162 5.93 0.3162
9 tumors 48.33 51.67 2.4667 45.83 2.3083 44.17 2.3083 44.17 2.3083
11 tumors 10.08 9.81 0.5603 9.81 0.5492 10.09 0.5206 10.09 0.5206
14 tumors 30.53 32.11 2.0368 31.58 1.9026 28.68 1.5289 28.68 1.5289

Average 16.83 21.80 1.0646 18.09 0.7327 17.75 0.6847

grid search was to optimize the PD. In the case of the SMT, the C parameter
found by the search was used both for computing the distance matrix and to
build the classifiers of each internal node.

Following [25], we used the Wilcoxon signed ranks test to compare the per-
formance of the classifiers by pairs when the measurements are “0/1” errors or
PD.

In Table 2, we show the results obtained in the experiments. Considering the
quality of the hierarchies measured by PD, we can see that SMT achieved the
best results. The differences are significant with p < 0.01 for Random, and with
p < 0.03 for DSVM. The MT algorithm was not applied on UCI datasets since
they are not separable. To summarize the results, in Table 3 we show the number
of victories, defeats and ties between each pair of algorithms. We can see that
SMT is the unique algorithm that never loses versus Random in all datasets;
and it only ties ones, in lymphoma dataset where all algorithms obtain the best
performance.

Additionally, it is important to remark that SMT and MT achieve the same
results in those datasets in which the number of features is higher than the
number of examples.

With respect to “0/1” errors, Table 2 shows that the results attained by
SVM multiclass are better in general (as it happens in [20]). Actually, SVM is
significantly better than Random and DSVM with p < 0.01, and better than

SMT with p < 0.04. Comparing multi-class classifiers attached to hierarchies of
classes, SMT is significantly better than Random with p < 0.01. These results
show that these methods have less predictive power than SVM, although they
produce valuable descriptive models represented in the hierarchies of classes.

Notice that sometimes an algorithm A obtains better “0/1” errors, but a
worse PD than other algorithm B. Even in that case, these scores mean that the
hierarchy learned by A is worse than that produced by B. The reason is that
although the hypothesis hA learned by A missclassifies less examples than the
corresponding hypothesis hB of B, the errors of hA are far in the corresponding
hierarchy from true classes. On the other hand, the more frequent misclassifica-
tions of hB are close to the true classes.

Table 3. Summary of PD scores. Number of wins (w), losses (l), and ties (t) between
pairs of algorithms considered. In the case of DSVM versus SMT (4/12/2), it must be
read as follows: DSVM is better than our approach SMT 4 times, worse 12 times, and
in 2 datasets they obtain equal results.

w/l/t MT SMT Random

DSVM 2/3/2 4/12/2 15/2/1
MT 0/0/7 6/0/1
SMT 17/0/1

6 Conclusions

In this paper we presented a new method for clustering a set of classes of a
multi-class learning task. These clusterings have shown their usefulness in fields
such as medicine or genetics of populations. The aim in all these cases is not only
to learn an accurate classifier but also to gain some insight into the application
domain.

Our approach computes a distance matrix between classes using a method
based on the soft margin of each pair of classes. Then, using a complete linkage
method, it is possible to build a dendrogram where the leaves are labeled by
classes. We tested Soft Margin Trees with other algorithms for clustering classes
and it was shown that SMT produces significantly better hierarchical clusters of
classes than those produced by other methods.

7 Acknowledgments

The research reported here is supported in part under grant TIN2008-06247 from
the MICINN (Ministerio de Ciencia e Innovación of Spain).

References

1. Patra, J., Ang, E.L., Meher, P., Zhen, Q.: A new som-based visualization technique
for dna microarray data. IJCNN ’06. International Joint Conference on Neural
Networks, 2006. (0-0 2006) 4429–4434

2. Ng, R., Sander, J., Sleumer, M., et al.: Hierarchical cluster analysis of SAGE data
for cancer profiling. In: Proceedings of BIOKDD 2001 Workshop on Data Mining
in Bioinformatics. (2001) 65–72

3. Hanotte, O., Bradley, D.G., Ochieng, J.W., Verjee, Y., Hill, E.W., Rege, J.E.O.:
African Pastoralism: Genetic Imprints of Origins and Migrations. Science
296(5566) (2002) 336–339

4. Vargo, E.: Hierarchical analysis of colony and population genetic structure of the
eastern subterranean termite, reticulitermes flavipes, using two classes of molecular
markers. Evolution 57(12) (2003) 2805–2818

5. Li, M., Tapio, I., Vilkki, J., Ivanova, Z., Kiselyova, T., Marzanov, N., Cinkulov,
M., Stojanovic, S., Ammosov, I., Popov, R., Kantanen, J.: The genetic structure
of cattle populations (Bos taurus) in northern Eurasia and the neighbouring Near
Eastern regions: implications for breeding strategies and conservation. Molecular
Ecology 16(18) (2007) 3839–3853

6. Rosenberg, N.A., Pritchard, J.K., Weber, J.L., Cann, H.M., Kidd, K.K., Zhivo-
tovsky, L.A., Feldman, M.W.: Genetic Structure of Human Populations. Science
298(5602) (2002) 2381–2385

7. Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines.
In: ICML ’04: Proceedings of the twenty-first international conference on Machine
learning, New York, NY, USA, ACM (2004) 105–112

8. Kohonen, T.: Self-organizing maps. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (1997)

9. Flexer, A.: On the use of self-organizing maps for clustering and visualization. In:
In Principles of Data Mining and Knowledge Discovery, Springer (1999) 80–88

10. Vesanto, J.: Som-based data visualization methods. Intelligent Data Analysis 3
(1999) 111–126

11. Nikkilä, J., Törönen, P., Kaski, S., Venna, J., Castrén, E., Wong, G.: Analysis and
visualization of gene expression data using Self-Organizing Maps. Neural Networks
15(8-9) (2002) 953–966

12. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3) (1967) 241–254

13. Vapnik, V.: Statistical Learning Theory. John Wiley, New York, NY (1998)

14. Weston, J., Watkins, C.: Multi-class support vector machines. In Verleysen, M.,
ed.: Proceedings of the 6th European Symposium on Artificial Neural Networks
(ESANN), D. Facto Press, Brussels (1999)

15. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2 (2001) 265–292

16. Kreßel, U.: Pairwise classification and support vector machines. In Schölkopf, B.,
Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel Methods – Support Vector
Learning, Cambridge, MA, MIT Press (1999) 255–268

17. Platt, J.C., Cristianini, N., Shawe-taylor, J.: Large margin dags for multiclass
classification. In: Advances in Neural Information Processing Systems, MIT Press
(2000) 547–553

18. Lei, H., Govindaraju, V.: Half-against-half multi-class support vector machines.
In: Multiple Classifier Systems, Springer (2005) 156–164

19. Benabdeslem, K., Bennani, Y.: Dendogram based svm for multi-class classification.
Information Technology Interfaces, 2006. 28th International Conference on (2006)
173–178

20. Tibshirani, R., Hastie, T.: Margin Trees for High-dimensional Classification. Jour-
nal of Machine Learning Research 8 (2007) 637–652

21. Asuncion, A., Newman, D.: UCI machine learning repository. School of Infor-
mation and Computer Sciences. University of California, Irvine, California, USA
(2007)

22. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin clas-
sifiers. In: Computational Learing Theory. (1992) 144–152

23. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press (2000)

24. Wu, T., Lin, C., Weng, R.: Probability Estimates for Multi-class Classification by
Pairwise Coupling. The Journal of Machine Learning Research 5 (2004) 975–1005

25. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research 7 (2006) 1–30

