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Abstract. The Job Shop Scheduling (JSS) is a hard problem that has interested
to researchers in various fields such as Operations Research and Artificial Intel-
ligence during the last decades. Due to its high complexity, only small instances
can be solved by exact methods, while instances with a size of practical interest
should be solved by means of approximate methods guided by heuristic knowl-
edge. In this paper we confront the Job Shop Scheduling with Sequence Depen-
dent Setup Times (SDJSS). The SDJSS problem models many real situations
better than the JSS. Our approach consists in extending a genetic algorithm and
a local search method that demonstrated to be efficient in solving the JSS prob-
lem. We report results from an experimental study showing that the proposed
approaches are more efficient than other genetic algorithm proposed in the liter-
ature, and that it is quite competitive with some of the state-of-the-art approaches.

Keywords: Metaheuristics, Genetic Algorithms, Local Search, Job Shop
Scheduling.

1 Introduction

The Job Shop Scheduling Problem with Sequence Dependent Setup Times (SDJSS) is
a variant of the classic Job Shop Scheduling Problem (JSS) in which a setup operation
on a machine is required when the machine switches between two jobs. This way the
SDJSS models many real situations better than the JSS. The SDJSS has interested
to a number of researchers, so we can find a number of approaches in the literature,
many of which try to extend solutions that were successful to the classic JSS problem.
This is the case, for example, of the branch and bound algorithm proposed by Brucker
and Thiele in [1], which is an extension of the well-known algorithms proposed in [2],
[3] and [4], and the genetic algorithm proposed by Cheung and Zhou in [5], which is
also an extension of a genetic algorithm for the JSS. Also, in [6] a neighborhood search
with heuristic repairing is proposed that it is an extension of the local search methods
for the JSS.

In this paper we apply a similar methodological approach and extend a genetic algo-
rithm and a local search method that we have applied previously to the JSS problem.
The genetic algorithm was designed by combining ideas taken from the literature such
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as for example the well-known G&T algorithm proposed by Giffler and Thomson in
[7], the codification schema proposed by Bierwirth in [8] and the local search methods
developed by various researchers, for example Dell’ Amico and Trubian in [9], Nowicki
and Smutnicki in [10] or Mattfeld in [11]. In [12] we reported results from an experi-
mental study over a set of selected problems showing that the genetic algorithm is quite
competitive with the most efficient methods for the JSS problem.

In order to extend the algorithm to the SDJSS problem, we have firstly extended the
decoding algorithm, which is based on the G&T algorithm. Furthermore, in our local
search method, we have adapted the neighborhood structure termed N1 in the literature
to obtain a neighborhood that we have termed NS

1 .
The experimental study was conducted over the set of 45 problem instances proposed

by Cheung and Zhou in [5] and also over the set of 15 instances proposed by Brucker
and Thiele in [1]. We have evaluated the genetic algorithm alone and then in conjunction
with local search. The results show that the proposed genetic algorithm is more efficient
than the genetic algorithm proposed in [5] and that the genetic algorithm combined with
local search improves with respect to the raw genetic algorithm when both of them run
during similar amount of time. Moreover, the efficiency of the genetic algorithm is at
least comparable to the exact approaches proposed in [1] and [13].

The rest of the paper is organized as it follows. In section 2 we formulate the SDJSS
problem. In section 3 we outline the genetic algorithm for the SDJSS. In section
4 we describe the extended local search method. Section 5 reports results from the
experimental study. Finally, in section 6 we summarize the main conclusions.

2 Problem Formulation

We start by defining the JSS problem. The classic JSS problem requires scheduling
a set of N jobs J1, . . . , JN on a set of M physical resources or machines R1, . . . , RM .
Each job Ji consists of a set of tasks or operations {θi1, . . . , θiM} to be sequentially
scheduled. Each task θil having a single resource requirement, a fixed duration pθil and
a start time stθil whose value should be determined.

The JSS has two binary constraints: precedence constraints and capacity constraints.
Precedence constraints, defined by the sequential routings of the tasks within a job,
translate into linear inequalities of the type: stθil + pθil ≤ stθi(l+1) (i.e. θil before
θi(l+1)). Capacity constraints that restrict the use of each resource to only one task at a
time translate into disjunctive constraints of the form: stθil + pθil ≤ stθjk ∨ stθjk +
pθjk ≤ stθil. Where θil and θjk are operations requiring the same machine. The ob-
jective is to come up with a feasible schedule such that the completion time, i.e. the
makespan, is minimized.

In the sequel a problem instance will be represented by a directed graph G = (V, A∪
E). Each node in the set V represents a operation of the problem, with the exception of
the dummy nodes start and end, which represent operations with processing time 0.
The arcs of the set A are called conjunctive arcs and represent precedence constraints
and the arcs of set E are called disjunctive arcs and represent capacity constraints.
Set E is partitioned into subsets Ei with E = ∪i=1,...,MEi. Subset Ei corresponds
to resource Ri and includes an arc (v, w) for each pair of operations requiring that
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Fig. 1. A feasible schedule to a problem with 3 jobs and 3 machines. Bold face arcs show a critical
path whose length, i.e. the makespan, is 22.

resource. The arcs are weighed with the processing time of the operation at the source
node. The dummy operation start is connected to the first operation of each job; and
the last operation of each job is connected to the node end.

A feasible schedule is represented by an acyclic subgraph Gs of G, Gs = (V, A∪H),
where H = ∪i=1..MHi, Hi being a hamiltonian selection of Ei. Therefore, finding out
a solution can be reduced to discovering compatible hamiltonian selections, i.e. order-
ings for the operations requiring the same resource or partial schedules, that translate
into a solution graph Gs without cycles. The makespan of the schedule is the cost of a
critical path. A critical path is a longest path from node start to node end. The critical
path is naturally decomposed into subsequences B1, . . . , Br called critical blocks. A
critical block is a maximal subsequence of operations of a critical path requiring the
same machine.

In the SDJSS, after an operation v of a job leaves machine m and before entering
an operation w of another job on the same machine, a setup operation is required with
duration Sm

vw. The setup operation can be started as soon as operation v leaves the ma-
chine m, hence possibly in parallel with the operation preceding w in its job sequence.
The setup time Sm

vw is added to the processing time of operation v to obtain the cost of
each disjunctive arc (v, w). Sm

0v is the setup time of machine m if v is the first operation
scheduled on m and Sm

v0 is the cleaning time of machine m if v is the last operation
scheduled on m.

Figure 1 shows a feasible solution to a problem with 3 jobs and 3 machines. Dotted
arcs represent the elements of set E included in the solution, while conjunctive arcs are
represented by continuous arrows.

3 Genetic Algorithm for the SDJSS Problem

The JSS is a paradigm of constraint satisfaction problems and was confronted by many
heuristic techniques. In particular genetic algorithms [8],[11],[14],[12] are a promising
approach due to their ability to be combined with other techniques such as tabu search
and simulated annealing. Moreover genetic algorithms allow for exploiting any kind
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Algorithm 1. Conventional Genetic Algorithm.
input: a JSS problem P
output: a schedule H for problem P
1. Generate the Initial Population;
2. Evaluate the Population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the Crossover and Mutation operators to the chromosomes selected at step 3. to
generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the Acceptation criterion to the set of chromosomes selected at step 3. together
with the chromosomes generated at step 4.;

end while
7. Return the schedule from the best chromosome evaluated so far;

of heuristic knowledge from the problem domain. In doing so, genetic algorithms are
actually competitive with the most efficient methods for JSS.

As mentioned above, in this paper we consider a conventional genetic algorithm for
tackling the JSS and extend it to the SDJSS. This requires mainly the adaptation of
the decoding algorithm. Additionally we consider a local search method for the JSS
and adapt it to the SDJSS.

Algorithm 1 shows the structure of the genetic algorithm we have considered. In the
first step the initial population is generated and evaluated. Then the genetic algorithm
iterates over a number of steps or generations. In each iteration a new generation is
built from the previous one by applying the genetic operators of selection, crossover,
mutation and acceptation. In principle, these four operators can be implemented in a
variety of ways and are independent each one to the others. However in practice all
of them should be chosen considering their effect on the remaining ones in order to
get a successful convergence. The approach taken in this work is the following. In the
selection phase all chromosomes are grouped into pairs, and then each one of these
pairs is mated and mutated accordingly to the corresponding probabilities to obtain two
offsprings. Finally a tournament selection is done among each pair of parents and their
offsprings.

To codify chromosomes we have chosen permutations with repetition proposed by
C. Bierwirth in [8]. In this scheme a chromosome is a permutation of the set of oper-
ations, each one being represented by its job number. This way a job number appears
within a chromosome as many times as the number of operations of its job. For exam-
ple, the chromosome (2 1 1 3 2 3 1 2 3) actually represents the permutation of opera-
tions (θ21 θ11 θ12 θ31 θ22 θ32 θ13 θ23 θ33). This permutation should be understood as ex-
pressing partial schedules for every set of operations requiring the same machine. This
codification presents a number of interesting characteristics; for example, it is easy to
evaluate with different algorithms and allows for efficient genetic operators. In [15] this
codification is compared with other permutation based codifications and demonstrated
to be the best one for the JSS problem over a set of 12 selected problem instances
of common use. For chromosome mating we have considered the Generalized Order
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Crossover (GOX) that works as it is shown in the following example. Let us consider
that the two following chromosomes are selected as parents for crossover

Parent1 (1 2 3 3 2 1 1 3 2) Parent2 (3 3 2 3 1 1 2 2 1)

Firstly, a substring is selected from Parent1 and inserted in the Offspring at the same
position as in this parent. Then the remaining positions of the Offspring are completed
with genes from Parent2 after having removed the genes selected from Parent1. If the
selected substring from Parent1 is the one marked with underlined characters, the re-
sulting Offspring is

Offspring (3 2 3 3 2 1 1 1 2).

By doing so, GOX preserves the order and position of the selected substring from
Parent1 and the relative order of the remaining genes from Parent2. The mutation op-
erator simply selects and swaps two genes at random. In practice the mutation would
not actually be necessary due to the GOX operator has an implicit mutation effect. For
example the second 3 from Parent1 is now the third one in the Offspring.

3.1 Decoding Algorithm

As decoding algorithm we have chosen the well-known G&T algorithm proposed by
Giffler and Thomson in [7] for the JSS and then we have made a natural extension for
the SDJSS. The G&T algorithm is an active schedule builder. A schedule is active
if one operation must be delayed when you want another one to start earlier. Active
schedules are good in average and, what is most important, it can be proved that the
space of active schedules contains at least an optimal one, that is, the set of active
schedules is dominant. For these reasons it is worth to restrict the search to this space.
Moreover, the G&T algorithm is complete for the JSS problem. Algorithm 2 shows
the G&T algorithm for the JSS.

In order to adapt the G&T algorithm for the SDJSS we consider an extension
termed EG&T . EG&T can be derived from the algorithm EGTA1 developed by
Ovacik and Uzsoy in [16], by simply taking into account the setup times in Algorithm
2. So, the step 4 of Algorithm 2 is exchanged by

4. Remove from B every operation θ that stθ ≥ stθ′ + pθ′ + SR
θ′θ for any θ′ ∈ B;

In Algorithm 2, stθ refers to the maximum completion time of the last scheduled op-
eration on the machine required by operation θ and the preceding operation to θ in its
job. Hence the algorithm can be adapted to the SDJSS problem by considering stθ as
the maximum completion time of the preceding operation in the job and the completion
time of the last scheduled operation in the machine plus the corresponding setup time.
It is easy to demonstrate that EG&T is not complete. In [17] two more extensions of
the G&T schedule generation scheme are proposed, one of them is not complete either,
and the other is complete but it is very time consuming due to it needs to do back-
tracking. In any case, the lack of completeness of a decoding algorithm is not a serious
problem in the framework of GAs due to a GA itself is not complete. Moreover, the
local search schema outlined in the next section gives to any chromosome the chance
of being reached, so in any way the lack of completeness of the decoding algorithm is
compensated.
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Algorithm 2. The decoding Giffler and Thomson algorithm for the JSS problem.
input: a chromosome C and a problem P
output: the schedule H represented by chromosome C for problem P
1. A = set containing the first operation of each job;
while A �= ∅ do

2. Determine the operation θ′ ∈ A with the earliest completion time if scheduled in the
current state, that is stθ′ + pθ′ ≤ stθ + pθ, ∀θ ∈ A;
3. Let R be the machine required by θ′, and B the subset of A whose operations require R;
4. Remove from B every operation that cannot start at a time earlier than stθ′ + pθ′;
5. Select θ∗ ∈ B so that it is the leftmost operation of B in the chromosome sequence;
6. Schedule θ∗ as early as possible to build the partial schedule corresponding to the next
state;
7. Remove θ∗ from A and insert the succeeding operation of θ∗ in set A if θ∗ is not the last
operation of its job;

end while
8. return the built schedule;

4 Local Search

Conventional genetic algorithms, like the one described in the previous section, of-
ten produce moderate results. However meaningful improvements can be obtained by
means of hybridization with other methods. One of such techniques is local search, in
this case the genetic algorithm is called a memetic algorithm. Hybridization of a genetic
algorithm with local search is carried out by applying the local search algorithm to ev-
ery chromosome just after this chromosome is generated, instead of simply applying
the Algorithm 2 as it is done in the simple genetic algorithm. Algorithm 3 shows the
typical strategy of a local search.

Roughly speaking local search is implemented by defining a neighborhood of each
point in the search space as the set of chromosomes reachable by a given transformation
rule. Then a chromosome is replaced in the population by one of its neighbors, if any
of them satisfies the acceptation criterion. The local search from a given point com-
pletes either after a number of iterations or when no neighbor satisfies the acceptation
criterion.

In this paper we consider the neighborhood structure proposed by Nowicki and
Smutnicki in [10], which is termed N1 by D. Mattfeld in [11], for the JSS. As other
strategies, N1 relies on the concepts of critical path and critical block. It considers ev-
ery critical block of a critical path and made a number of moves on the operations of
each block. After a move inside a block, the feasibility must be tested. Since an exact
procedure is computationally prohibitive, the feasibility is estimated by an approximate
algorithm proposed by Dell’ Amico and Trubian in [9]. This estimation ensures fea-
sibility at the expense of omitting a few feasible solutions. In [11] the transformation
rules of N1 are defined as follows.

Definition 1. (N1) Given a schedule H with partial schedules Hi for each machine
Ri, 1 ≤ i ≤ M , the neighborhood N1(H) consist of all schedules derived from H by
reversing one arc (v, w) of the critical path with (v, w) ∈ Hi. At least one of v and w is
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Algorithm 3. The Local Search Algorithm.
input: a chromosome C and a JSS problem P
output: a (hopefully) improved chromosome
1. Evaluate chromosome C (Algorithm 2) to obtain schedule H ;
while No termination criterion is satisfied do

2. Generate the neighborhood of H with some method N , N(H);
3. Select H ′ ∈ N(H) with the selection criterion;
4. Replace H by H ′ if the acceptation criterion holds;

end while
5. Rebuild chromosome C from schedule H ;
6. return chromosome C;

either the first or the last member of a block. For the first block only v and w at the end
of the block are considered whereas for the last block only v and w at the beginning of
the block must be checked.

The selection strategy of a neighbor and the acceptation criterion are based on a
makespan estimation, which is done in constant time as it is also described in [9],
instead of calculating the exact makespan of each neighbor. The estimation provides
a lower bound of the makespan. The selected neighbor is the one with the lowest
makespan estimation whenever this value is lower than the makespan of the cur-
rent chromosome. Notice that this strategy is not steepest descendent because the exact
makespan of selected neighbor is not always better than the makespan of the current
solution. We have done this choice in the classic JSS problem due to it produces better
results than a strict steepest descent gradient method. [12].

The Algorithm stops either after a number of iterations or when the estimated
makespan of selected neighbor is larger than the makespan of the current chromo-
some.

This neighborhood relies on the fact that, for the JSS problem, reversing an arc of
the critical path always maintains feasibility. Moreover, the only possibility to obtain
some improvement by reversing an arc is that the reversed arc is either the first or the
last of a critical block.

However, things are not the same for SDJSS problem due to the differences in
the setup times. As can we see in [6], feasibility is not guaranteed when reversing an
arc of the critical path, and reversing an arc inside a block could lead to an improving
schedule. The following results give sufficient conditions of no-improving when an arc
is reversed in a solution H of the SDJSS problem. In the setup times the machine is
omitted for simplicity due to all of them refers to the same machine.

Theorem 1. Let H be a schedule and (v, w) an arc that is not in a critical block.
Then reversing the arc (v, w) does not produce any improvement even if the resulting
schedule is feasible.

Theorem 2. Let H be a schedule and (v, w) an arc inside a critical block, that is
there exist arcs (x, v) and (w, y) belonging to the same block. Even if the schedule H ′
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obtained from H by reversing the arc (v, w) is feasible, H ′ is not better than H if the
following condition holds

Sxw + Swv + Svy ≥ Sxv + Svw + Swy (1)

Theorem 3. Let H be a schedule and (v, w) an arc in a critical path so that v is the
first operation of the first critical block and z is the successor of w in the critical path
and Mw = Mz . Even if reversing the arc (v, w) leaves to a feasible schedule, there is
no improvement if the following condition holds

S0w + Swv + Svz ≥ S0v + Svw + Swz (2)

Analogous, we can formulate a similar result if w is the last operation of the last critical
block.

Hence we can finally define the neighborhood strategy for the SDJSS problem as it
follows

Definition 2. (NS
1 ) Given a schedule H , the neighborhood NS

1 (H) consist of all
schedules derived from H by reversing one arc (v, w) of the critical path provided
that none of the conditions given in previous theorems 1, 2 and 3 hold.

4.1 Feasibility Checking

Regarding feasibility, for the SDJSS it is always required to check it after reversing an
arc. As usual, we assume that the triangular inequality holds, what is quite reasonable in
actual production plans, that is for any operations u,v and w requiring the same machine

Suw ≤ Suv + Svw (3)

Then the following is a necessary condition for no-feasibility after reversing the arc
(v, w).

Theorem 4. Let H be a schedule and (v, w) an arc in a critical path, PJw the opera-
tion preceding w in its job and SJv the successor of v in its job. Then if reversing the
arc (v, w) produces a cycle in the solution graph, the following condition holds

stPJw > stSJv + duSJv + Smin (4)

where

Smin = min{Skl/(k, l) ∈ E, Jk = Jv}

and Jk is the job of operation k.

Therefore the feasibility estimation is efficient at the cost of discarding some feasible
neighbor.
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4.2 Makespan Estimation

For makespan estimation after reversing an arc, we have also extended the method
proposed by Taillard in [18] for the JSS. This method was used also by Dell’Amico
and Trubian in [9] and by Mattfeld in [11]. This method requires calculating heads and
tails. The head rv of an operation v is the cost of the longest path from node start to
node v in the solution graph, i.e. is the value of stv. The tail qv is defined so as the value
qv + pv is the cost of the longest path from node v to node end.

For every node v, the value rv + pv + qv is the length of the longest path from
node start to node end trough node v, and hence it is a lower bound of the makespan.
Moreover, it is the makespan if node v belongs to the critical path. So, we can get a
lower bound of the new schedule by calculating rv + pv + qv after reversing (v, w).

Let us denote by PMv and SMv the predecessor and successor nodes of v respec-
tively on the machine sequence in a schedule. Let nodes x and z be PMv and SMw

respectively in schedule H . Let us note that in H ′ nodes x and z are PMw and SMv

respectively. Then the new heads and tails of operations v and w after reversing the arc
(v, w) can be calculated as the following

r′w = max(rx + px + Sxw, rPJw + pPJw)

r′v = max(r′w + pw + Swv, rPJv + pPJv)

q′v = max(qz + pz + Svz, qSJv + pSJv)

q′w = max(q′v + pv + Svw, qSJw + pSJw)

From these new values of heads and tails the makespan of H ′ can be estimated by

C′
max = max(r′v + pv + q′v, r

′
w + pw + q′w)

which is actually a lower bound of the new makespan. This way, we can get an effi-
cient makespan estimation of schedule H ′ at the risk of discarding some improving
schedule.

5 Experimental Study

For experimental study we have used the set of problems proposed by Cheung and Zhou
in [5] and also the benchmark instances taken from Brucker and Thiele [1]. The first one
is a set of 45 instances with sizes (given by the number of jobs and number of machines
N ×M ) 10×10, 10×20 and 20×20, which is organized into 3 types. Instances of type
1 have processing times and setup times uniformly distributed in (10,50); instances of
type 2 have processing times in (10,50) and setup times in (50,99); and instances of type
3 have processing times in (50,99) and setup times in (10,50). Table 1 shows the results
from the genetic algorithm termed GA SPTS reported in [5]. The data are grouped
for sizes and types and values reported are averaged for each group. This algorithm
was coded in FORTRAN and run on PC 486/66. The computation time with problem
sizes 10 × 10, 10 × 20 and 20 × 20 are about 16, 30 and 70 minutes respectively. Each
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Table 1. Results from the GA SPTS

ZRD Size Type Best Avg StDev
Instance N × M

1-5 10 × 10 1 835,4 864,2 21,46
6-10 10 × 10 2 1323,0 1349,6 21,00

11-15 10 × 10 3 1524,6 1556,0 35,44
16-20 20 × 10 1 1339,4 1377,0 25,32
21-25 20 × 10 2 2327,2 2375,8 46,26
26-30 20 × 10 3 2426,6 2526,2 75,90
31-35 20 × 20 1 1787,4 1849,4 57,78
36-40 20 × 20 2 2859,4 2982,0 93,92
41-45 20 × 20 3 3197,8 3309,6 121,52

Table 2. Results from the GA EG&T

ZRD Size Type Best Avg StDev
Instances N × M

1-5 10 × 10 1 785,0 803,0 8,76
6-10 10 × 10 2 1282,0 1300,2 9,82

11-15 10 × 10 3 1434,6 1455,4 12,87
16-20 20 × 10 1 1285,8 1323,0 15,38
21-25 20 × 10 2 2229,6 2278,2 22,24
26-30 20 × 10 3 2330,4 2385,8 23,91
31-35 20 × 20 1 1631,6 1680,4 17,99
36-40 20 × 20 2 2678,0 2727,8 23,60
41-45 20 × 20 3 3052,0 3119,6 29,33

Table 3. Results from the GA EG&T LS

ZRD Size Type Best Avg StDev
Instances N × M

1-5 10 × 10 1 778,6 788,5 6,70
6-10 10 × 10 2 1270,0 1290,4 9,16

11-15 10 × 10 3 1433,8 1439,8 6,71
16-20 20 × 10 1 1230,2 1255,5 12,74
21-25 20 × 10 2 2178,4 2216,8 18,61
26-30 20 × 10 3 2235,2 2274,0 19,32
31-35 20 × 20 1 1590,0 1619,8 15,90
36-40 20 × 20 2 2610,2 2668,0 27,48
41-45 20 × 20 3 2926,0 2982,2 26,32

algorithm run was stopped at the end of the 2000th generation and tried 10 times for
each instance.

Tables 2 and 3 reports the results reached by the genetic algorithm alone and the
genetic algorithm with local search, termed GA EG&T and GA EG&T LS respec-
tively, proposed in this work. In the first case the genetic algorithm was parameterized
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Fig. 2. Comparison of the raw genetic algorithm with the memetic algorithm. The graphic shows
for each problem the quotient of the mean makespan of the best solutions reached in all 30 trials
by the raw GA and the GA with local search.

with a population of 100 chromosomes, a number of 140 generations, crossover proba-
bility of 0.7, and mutation probability of 0.2. For the experiments combining the genetic
algorithm with local search, we have parameterized the genetic algorithms with 50 chro-
mosomes in the population and 50 generations in order to have similar running times.

The rest of the parameters remain as in previous experiments. The genetic algorithm
was run 30 times and reported the values of the best solution reached, the average of the
best solutions of the 30 runs and the standard deviation. The machine was a Pentium IV
at 1.7 Ghz. and the computation time varied from about 1 sec. for the smaller instances
to about 10 sec. for the larger ones. As we can observe both algorithms improved the
results obtained by the GA SPTS. Moreover algorithm GA EG&T LS has outper-
formed GA EG&T . Figure 2 shows the relative improvement of GA EG&T LS over
GA EG&T in all problems. The improvement is clear in almost all cases. Regarding
the benchmark from Brucker and Thiele [1], these instances are defined from the clas-
sical JSS instances, proposed by Lawrence [19], by introducing setup times. There
are 15 instances named t2 ps01 to t2 ps15. Instances t2 ps01 to t2 ps05 are of type
10 × 5 (small instances). Instances t2 ps06 to t2 ps10 are of type 15 × 5 (medium
instances). Instances t2 ps11 to t2 ps15 are of type 20 × 5 (large instances). Table 4
shows results from two state-of-the-art methods: the branch and bound algorithms pro-
posed by Brucker and Thiele [1] (denoted as BT 96) and Artigues et al. in [13] (denoted
as ABF04). In the results reported in [1] and [13] the target machine was Sun 4/20 sta-
tion and Pentium IV at 2.0 GHz. in both cases the time limit for the experiments was
7200 sec. In this case, our memetic algorithm was parameterized as the following: pop-
ulation size = 100 for small and medium instances and 200 for larger instances, and the
number of generations has been 100 for small instances, 200 for medium instances, and
400 for larger instances. The rest of the parameters remain as in previous experiments.
We run the algorithm 30 times for each instance, and the computation time for the larger
instances was 30 sec. for each run, i.e. 900 sec. of running time for each instance.
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Table 4. Comparison between BT96, ABF04 and GA EG&T LS

Problem Size BT96 ABF04 GA EG&T LS
Instance N × M

t2 ps01 10 × 5 798 798 798
t2 ps02 10 × 5 784 784 784
t2 ps03 10 × 5 749 749 749
t2 ps04 10 × 5 730 730 730
t2 ps05 10 × 5 691 691 693
t2 ps06 15 × 5 1056 1026 1026
t2 ps07 15 × 5 1087 970 970
t2 ps08 15 × 5 1096 1002 975
t2 ps09 15 × 5 1119 1060 1060
t2 ps05 15 × 5 1058 1018 1018
t2 ps06 20 × 5 1658 - 1450
t2 ps07 20 × 5 1528 1319 1347
t2 ps08 20 × 5 1549 1439 1431
t2 ps09 20 × 5 1592 - 1532
t2 ps05 20 × 5 1744 - 1523

values in bold are optimal

As we can observe, GA EG&T LS is able to reach optimal solutions for the smaller
instances, as BT 96 and ABF04, with only one exception. For the medium and large
instances reaches solutions that are better or equal than ABF04 and much better that
BT 06. Unfortunately, for the larger instances, results from only two instances are re-
ported in [13].

6 Conclusions

In this work we have confronted the Job Shop Scheduling Problem with Sequence De-
pendent Setup Times by means of a genetic algorithm hybridized with local search. As
other approaches reported in the literature, we have extended a solution developed for
the classic JSS problem. We have reported results from an experimental study on the
benchmark proposed in [5] showing that the proposed genetic algorithms produce bet-
ter results than the genetic algorithm proposed in [5], mainly when these algorithms are
hybridized with local search. Here it is important to remark that the running conditions
of both genetic algorithms are not strictly comparable. Also we have experimented with
the benchmark proposed by Brucker and Thiele in [1], and compare our memetic algo-
rithm with two state-of-the-art exact branch and bound approaches due to Brucker and
Thiele [1] and Artigues et al. in [13] respectively. In this case the results shown that our
approach is quite competitive.

As future work we plan to look for new extensions of the G&T algorithm in order
to obtain a complete decoding algorithm and more efficient operators. Also we will try
to extend other local search algorithms and neighborhoods that have been proved to be
very efficient for the JSS problem.
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