

NOTICE: This is the author’s version of a work accepted for publication in The

Computer Journal Published by Oxford University Press. All rights reserved.

Changes resulting from the publishing process, including peer review, editing,

corrections, structural formatting and other quality control mechanisms, may not

be reflected in this document. A definitive version was subsequently published

in The Computer Journal, Volume 54, Issue 11, pp. 1901−1924, November

2011.

Type Inference to Optimize a Hybrid
Statically and Dynamically Typed

Language
Francisco Ortin

Computational Reflection Research Group, Department of Computer Science,
Calvo Sotelo s/n, 33007, Oviedo, Spain

Email: ortin@lsi.uniovi.es

Dynamically typed languages are becoming increasingly popular for different
software development scenarios such as Web engineering, rapid prototyping,
or the construction of applications that require runtime adaptiveness. In
contrast, statically typed languages have undeniable advantages such as early
type error detection and more opportunities for compiler optimizations. Since
both approaches offer different benefits, hybrid statically and dynamically typed
programming languages have emerged, and some statically typed languages
have also incorporated dynamic typing capabilities. In this paper we present
the minimal core of StaDyn, a hybrid typing language that performs static
type inference of both statically and dynamically typed references. The type
information gathered by the compiler is used to generate efficient .NET code,
obtaining a significant runtime performance improvement compared to C# 4.0

and Visual Basic 10.

Keywords: Hybrid Static and Dynamic Typing; Union Types; Intersection Types; Runtime
Performance; Type Systems

Received 15 February 2011

1. INTRODUCTION

Dynamically typed programming languages have re-
cently turned out to be really suitable for specific sce-
narios such as Web development, application frame-
works, game scripting, interactive programming, rapid
prototyping, dynamic aspect-oriented programming,
and any kind of runtime adaptable or adaptive soft-
ware. The main benefit of these languages is the sim-
plicity they offer to model the dynamicity that is some-
times required to build high context-dependent soft-
ware. Common features of dynamic languages are meta-
programming, reflection, mobility, and dynamic recon-
figuration and distribution.

Taking the Web engineering area as an example,
Ruby [1] has been successfully used together with
the Ruby on Rails framework for creating database-
backed web applications [2]. This framework has
confirmed the simplicity of implementing the DRY
(Don’t Repeat Yourself) [3] and the Convention
over Configuration [2] principles with this kind of
languages. Nowadays, JavaScript [4] is being widely
employed to create interactive Web applications with
AJAX (Asynchronous JavaScript And XML) [5], while
PHP (PHP Hypertext Preprocessor) is one of the
most popular languages to develop Web-based views.

Python [6] is used for many different purposes, being
the Zope application server [7] (a framework for
building content management systems, intranets and
custom applications) and the Django Web application
framework [8] two well-known examples. Due to its
small size, portability and ease of integration, Lua
[9] has gained great popularity for extending games
[10]. Finally, a wide range of dynamic aspect-oriented
tools has been built over dynamic languages [11, 12,
1, 13], offering a higher runtime adaptiveness than the
common static ones.

The benefits offered by dynamically typed program-
ming languages have caused the recent addition of dy-
namic typing to some statically typed languages. A
clear example of this trend is the newly added dynamic

type to the C# 4.0 programming language [14]. This
new type instructs the compiler to postpone every static
type checking operation until runtime. With this new
characteristic, it is possible to develop more flexible
code, even in the presence of the advanced C# static
type system. It is also possible to directly access dy-
namically typed programs written in IronPython, Iron-
Ruby and the JavaScript code used in Silverlight, ex-
ploiting the Dynamic Language Runtime (DLR) ser-
vices [15].

Java also seems to follow this trend. The

The Computer Journal, Vol. , No. ,

2 F. Ortin

Java Specification Request (JSR) 292 [16], expected
to be included in Java 1.7, incorporates the new
invokedynamic opcode to the Java Virtual Machine
(JVM) in order to support the implementation of
dynamically typed object-oriented languages. Since
the computational model of dynamic languages requires
extending the JVM semantics, Sun Microsystems
launched the Da Vinci Machine project in January 2008
[17]. This project is aimed at prototyping a number of
enhancements to the JVM, so that it can run non-Java
languages, especially dynamic ones, with a performance
level comparable to that of Java itself.

The great flexibility of dynamic languages is,
however, counteracted by limitations derived by the
lack of static type checking. This deficiency implies two
major drawbacks: no early detection of type errors, and
commonly a considerable runtime performance penalty.
Static typing offers the programmer the detection of
type errors at compile time, making it possible to
fix them immediately rather than discovering them
at runtime –when the programmer’s efforts might
be aimed at some other task, or even after the
program has been deployed [18]. Moreover, the runtime
type inspection and type checking performed by
dynamic type systems commonly involve a significant
performance penalty.

Since both approaches offer important benefits, there
have been former works on providing both typing
approaches in the same language (see Section 6). Meijer
and Drayton maintained that instead of providing
programmers with a black or white choice between
static or dynamic typing, it could be useful to
strive for softer type systems [19]. Static typing
allows earlier detection of programming mistakes,
better documentation, more opportunities for compiler
optimizations, and increased runtime performance.
Dynamic typing languages provide a solution to
a kind of computational incompleteness inherent
to statically-typed languages, offering, for example,
storage of persistent data, inter-process communication,
dynamic program behavior customization, or generative
programming [20]. Hence, there are situations in
programming when one would like to use dynamic types
even in the presence of advanced static type systems
[21]. That is, static typing where possible, dynamic
typing when needed [19].

Our work breaks the programmers’ black or white
choice between static or dynamic typing. We have
designed a programming language, called StaDyn [22],
that supports both static and dynamic typing in
the very same programming language—an informal
description of the language can be consulted in [23].
Dynamic typing offers higher flexibility, whereas static
typing implies better robustness and performance.
The major contribution of our programming language,
compared to the existing hybrid typing languages,
is that the compiler keeps performing type checking
even over dynamic references. The type information

gathered at compile time is used for both improving the
runtime performance and the early type error detection
of the programming language.

In this paper we reduce the StaDyn programming
language to its minimal core, making it easy to describe
its type system and its erasure semantics. The key
contributions of this paper are:

• A type system to infer static type information
of dynamic references (Section 3.2). The type
system is flow-sensitive [24] and interprets static
information along the control flow path, merging
the type information of the incoming branches with
union and intersection types [25]. This information
is used to improve both the efficiency and the
robustness of programs written in this language.

• Its erasure semantics specification by translating
the StaDyn core to C# (Section 4). The
translation scheme uses the static type information
gathered by the compiler to generate efficient .Net
code.

• A runtime performance assessment to measure the
runtime performance of our proposal (Section 5.2).
We compare runtime performance of the StaDyn
core with that of the C# 4.0 and Visual Basic 10
programming languages. For this evaluation, we
have used two dynamically typed benchmarks, a
hybrid statically and dynamically typed program,
and a synthetic micro-benchmark that measures
the relationship between execution time and type
information inferred by the compiler.

The rest of this paper is structured as follows. In the
next section, we provide an informal overview of the
StaDyn core to motivate our work. Section 3 formally
describes the abstract syntax (Section 3.1) and the type
system (Section 3.2) of the StaDyn core. Section 4
presents its erasure semantics by translating it into C#,
and a runtime performance assessment is detailed in
Section 5. Related work is commented in Section 6 and,
finally, Section 7 presents the conclusions and future
work.

2. AN INFORMAL OVERVIEW OF THE
STADYN CORE

Figure 1 shows an example use of the dynamic type
recently included in C# 4.0. The first benefit is
duck typing. Duck typing [1] is a property offered
by most dynamically typed languages that means that
an object is interchangeable with any other object
that implements the same dynamic interface, regardless
of whether those objects have a related inheritance
hierarchy or not. In line 33 (Figure 1) the x field of
the data attribute in the l list is accessed regardless of
its type (list and l have been declared as dynamic).
This means that the first parameter of the positiveX

method could be any linked list whose data objects
implement an x field. These objects do not need to

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 3

01: using System;
02: class Points {
03: static dynamic createNode(dynamic data, dynamic next){
04: return new { data = data, next = next };
05: }
06: static dynamic createPoint(int dimensions, int x,

 int y, int z) {
07: dynamic point;
08: if (dimensions == 2)
09: point = new { x=x, y=y, dimensions=dimensions };
10: else
11: point = new { x=x, y=y, z=z, dimensions=3 };
12: return point;
13: }
14: static dynamic createPoints(int number) {
15: int i;
16: dynamic list, point;
17: i = 0;
18: list = null;
19: while (i < number) {
20: point = createPoint(i%2 + 2, number/2 - i, i, i);
21: list = createNode(point, list);
22: i = i + 1;
23: }
24: return list;
25: }
26: static dynamic positiveX(dynamic list, int n) {
27: int i;
28: dynamic l, result;
29: i = 0;
30: result = null;
31: l = list;
32: while (i < n) {
33: if (l.data.x >= 0)
34: result = createNode(l.data, result);
35: l = l.next;
36: i = i + 1;
37: }
38: return result;
39: }

40: static double distance3D(dynamic point) {
41: double value;
42: value = Double.MaxValue;
43: // point.center++; // No compiler error
44: if (point.dimensions == 3)
45: value = Math.Sqrt(point.x*point.x +

 point.y*point.y + point.z*point.z);
46: return value;
47: }
48: static dynamic closestToOrigin3D(dynamic list, int n) {
49: int i;
50: double minDistance;
51: dynamic l, point3D = null;
52: minDistance = Double.MaxValue;
53: l = list;
54: i = 0;
55: while (i < n) {
56: if (distance3D(l.data) < minDistance) {
57: minDistance = distance3D(l.data);
58: point3D = l.data;
59: }
60: l = l.next;
61: i = i + 1;
62: }
63: return point3D;
64: }
65: static void Main() {
66: int numberOfPoints;
67: dynamic list, positive, point;
68: numberOfPoints = 10;
69: list = createPoints(numberOfPoints);
70: // list.data = 10; // No compiler error
71: positive = positiveX(list, numberOfPoints);
72: point = closestToOrigin3D(list, numberOfPoints);
73: }
74: }

FIGURE 1. Sample C# 4.0 code that makes use of dynamic typing.

belong to a specific hierarchy defining the shared x

message, and they do not have to be instances of the
same type either. An example of this flexibility is
shown in Figure 1, where the list reference passed
to the positiveX method (line 71) holds a linked list
with objects of two different types (two and three
dimensional points). The method returns another list
containing those objects whose x field value is positive,
regardless of their type.

Dynamic typing is also used in the
closestToOrigin3D method. In this case, the
first parameter should be a linked list whose data is
any object that implements a dimensions field compa-
rable with an integer. Moreover, those objects whose
dimensions field value is 3 must implement the x, y

and z fields, and they must be subtypes of double

(they are passed as parameters to the Math.Sqrt

method). The returned object is the one that fulfills
these conditions, being that nearest to the origin of
coordinates. This example shows how the C# 4.0 type
system can consider dynamic conditions.

StaDyn is an object-oriented programming language
based on C# 3.0 that supports both dynamic and
static typing. Although the current implementation of
StaDyn offers most of the features of C# 3.0 [22], its
minimal core is focused on formalizing how to include
dynamic and static typing in the same programming
language. For that purpose, only its minimal core

features are specified here: functions, objects (without
methods), arrays, assignments, and integer and boolean
expressions. Type variables are also included to offer
implicit type reconstruction by means of extending the
usage of the var reserved word added in C# 3.0 [26].
In the StaDyn core, var references can be set as static
(by default) or dynamic, modifying how type-checking
is performed.

A formal specification of the StaDyn core program-
ming language is presented later in this paper: its ab-
stract syntax is specified in Section 3.1; Section 3.2 de-
tails the hybrid (static and dynamic) type system; and,
based on the semantics of C#, Section 4 describes the
erasure semantics of the minimal core of StaDyn, de-
picting the translation templates used to generate .Net
code optimized by means of the static type information
gathered by the compiler.

Figure 2 shows the StaDyn core version of the
C# program in Figure 1. In the StaDyn core, the
dynamism of var references is explicitly stated with
the dyn reserved word. The major benefit of using
StaDyn is that static type checking is performed even
over dynamic references. For instance, the positiveX

function statically checks that each data object in list

provides a public x field. Unlike C#, the StaDyn
core prompts a compilation error in line 70 (function
invocation in Figure 2), if code in line 69 is commented
out. The error indicates that one of the elements in

The Computer Journal, Vol. , No. ,

4 F. Ortin

01: var createNode(var data, var next) {
02: return new { data=data, next=next};
03: }
04: var createPoint(int dimensions, int x,int y,int z) {
05: var point;
06: if (dimensions == 2)
07: point = new {x=x, y=y, dimensions=dimensions};
08: else
09: point = new {x=x, y=y, z=z, dimensions=3};
10: return point;
11: }
12: var createPoints(int number) {
13: int i;
14: var list, point;
15: i = 1;
16: point = createPoint(3,0,0,0); // Last node (null)
17: list = createNode(point, 0);
18: while (i < number) {
19: point = createPoint(i%2 + 2, number/2-i, i, i);
20: list = createNode(point, list);
21: i = i+1;
22: }
23: return list;
24: }
25: var positiveX(var list, int n) {
26: int i;
27: var l, result;
28: result = i = 0;
29: l = list;
30: while (i < n) {
31: if (l.data.x >= 0)
32: result = createNode(l.data, result);
33: l = l.next;
34: i = i+1;
35: }
36: return result;
37: }

38: int distance3D(/*dyn*/ var point) {
39: int value;
40: value = 2147483647;
41: // point.center; // Compiler error
42: if (point.dimensions == 3)
43: value = point.x*point.x + point.y*point.y

 + point.z*point.z;
44: return value;
45: }
46: var closestToOrigin3D(var list, int n) {
47: int i, minDistance;
48: var l, point3D;
49: minDistance = 2147483647;
50: l = list;
51: i = 0;
52: while (i < n) {
53: if (distance3D(l.data) < minDistance) {
54: minDistance = distance3D(l.data);
55: point3D = l.data;
56: }
57: l = l.next;
58: i = i+1;
59: }
60: return point3D;
61: }
62:
63:
64: void main() {
65: int i, numberOfPoints;
66: var list, positive, point;
67: numberOfPoints = 10;
68: list = createPoints(numberOfPoints);
69: // list.data = 3; // Compiler error
70: positive = positiveX(list, numberOfPoints);
71: point = closestToOrigin3D(list, numberOfPoints);
72: }

FIGURE 2. Example coded in the minimal core of StaDyn.

the list (the integer) does not provide the x message.
In contrast, C# 4.0 compiles the code and the error is
produced at runtime (line 70 in Figure 1).

Our compiler gathers type information at compile
time in order to perform static type checking over
dynamic references. One of the elements we have used
for this purpose is union types [25]. A union type T1∨T2

denotes the ordinary union of the set of values belonging
to T1 and the set of values belonging to T2 [27],
representing the least upper bound of T1 and T2 [28]. A
union type holds all the possible types a reference may
have. The set of operations (e.g., addition, field access,
assignment, invocation or indexing) that can be applied
to a union type are those accepted by every type in the
union type (inference rules of static union types are S-
SUnionL and S-SUnionR in Figure 11). Union types
were already included in object-oriented languages, in
type systems where they were explicitly declared [29] or
inferred from implicitly typed references [30].

In our example, the type inferred for list in line 68
(Figure 2) is a list of {x:int, y:int, dimensions:int} ∨
{x:int, y:int, z:int, dimensions:int}, meaning two or
three dimensional points. In the invocation of the
positiveX function (line 70), it is statically checked
that the argument is a list of objects that provide an
x field. Since this condition is statically fulfilled, the
program is compiled without errors (and the static type
information is used to optimize its execution). However,

if we uncomment line 69, an error message will be
shown.

The closestToOrigin3D function imposes more
constraints to the list parameter. Objects in list

must provide the dimensions, x, y and z fields because
of the invocation to distance3D. We represent these
constraints by means of intersection types [25]. T1 ∧ T2

denotes all the values belonging to both T1 and T2 [27],
representing the greatest lower bound of T1 and T2 [28].
A type promotes to a static intersection type only if it
is a subtype of all the types collected by the intersection
type (S-SInterR rule in Figure 11).

In our example, the argument list of the
closestToOrigin3D function must be a list of X type,
being X ≤ [dimensions:X1] ∧ [x:X2] ∧ [y:X3] ∧ [z:X4]
(an object with all these four fields). However, the
invocation in line 71 produces a compilation error
because list holds a union type of both two and three
dimensional points, and the former do not provide the
z field. Our approach is to make the type system
more lenient, without renouncing static type checking.
The point parameter of the distance3D function can
be declared as dynamic (uncommenting the dyn type
qualification in line 38 of Figure 2). In this case,
the promotion to intersection types is more permissive:
the argument should be a subtype of at least one of
the types in the intersection type (rule S-DInterR in
Figure 11). Then, the program would generate no error

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 5

Program P ::= F ∗ D∗ S+

Function F ::= (void|ST) id ((ST id)∗) D∗ S∗ R?

Declaration D ::= ST id
Statement S ::= E | if E S+ S∗ | while E S∗

Return R ::= return E
Expression E ::= id | id (E∗) | E⊕E | E⊗E | E#E | E=E | E.id | E [E] |

new {(id=E)∗} | new ST[E]([])∗ | true | false | IntLiteral

Syntax types ST ::= int | bool | Array(ST) | {(id :ST)∗} | TV

Type variable TV ::= Dyn? Xi

Dynamism Dyn ::= sta | dyn
Internal types T ::= ST | [(id :T)∗] | ST × . . .× ST → ST‖C∗ | {(id :T)∗} |

Dyn? T ∨ . . . ∨ T | Dyn? T ∧ . . . ∧ T | Array(T)

Constraints C ::= IT ≤ T | TV ← T

FIGURE 3. Abstract Syntax of the StaDyn minimal core.

because both types of points offer a public dimensions

field. This relaxation of the subtyping relation when
references are declared as dynamic is also applied to
union types (S-DUnionL): the promotion should be
fulfilled by at least one of the types in the union type.

It is worth noting that type checking is still performed
at compile type even when the programmer uses
dynamic references. As an example, if line 41 in
Figure 2 is uncommented, an error is shown even though
point has been declared as dynamic (the center

message is not accepted by either of the two possible
points); whereas C# compiles the code, producing the
type error at runtime (line 43 in Figure 1). This
example informally shows the objective of StaDyn: to
offer both the flexibility of dynamic typing and the
robustness and efficiency of static typing.

3. THE STADYN CORE LANGUAGE

After an informal overview of the aim of the StaDyn
core programming language, we describe its syntax
and type system. Next section describes its erasure
semantics by translating it into to C#.

3.1. Syntax

The first part of Figure 3 shows the abstract syntax
of the minimal core (the second and third parts are,
respectively, types and constraints). EBNF is used,
where + means repetition of at least one element, ∗

matches zero or more occurrences, ? means optionally
matching the previous element, and | represents
alternative.

A program (P) is composed of a sequence of
function declarations (F ∗) followed by the local variable
declarations (D∗) and statements (S+) of the main
function. Although the programmer may use the
return statement the same way as in C#, it could
only be placed as the last statement of the abstract
syntax. This transformation is performed by the parser
to facilitate type inference in conditional and iterative

control structures (Section 3.2.6).
A statement can be any expression (including assign-

ments), a conditional statement (if), or an iterative one
(while). Since assignments are expressions, the parser
annotates every expression node of the Abstract Syn-
tax Tree (AST) with a boolean value (lhsAssign) that
reveals whether or not it is a direct left child of an as-
signment. This value will be used by the type system
for type-checking purposes.

The ⊕ operator represents arithmetic operations,
⊗ logical ones and # symbolizes relational operators.
Objects are created following the syntax of the C# 3.0
feature of anonymous types [26]: between curly braces,
there is listed a sequence of field identifiers followed by
the assignment operator and an expression representing
their initial values (see lines 9 and 11 in Figure 1).
The new expression for arrays creates one-dimensional
arrays. Multidimensional arrays should be built in loops
repeating the construction of one-dimensional arrays.

3.2. Type System

Types used to describe the StaDyn minimal core type
system are shown in the second part of Figure 3. Syntax
types (ST) are those that may be directly written by the
programmer, whereas internal types (T) are internally
used by the type system without the knowledge of the
programmer. The point of avoiding the direct use of
internal types is to offer the programmer the greatest
possible simplicity without losing the expressive power
of the type system.

Object types are specified describing a collection
of their fields between curly braces, not including
methods1. Methods can be represented by functions
where this is the first parameter. Although this
representation does not support method overriding, it
allows us to significantly reduce the StaDyn core type
system. StaDyn (the whole programming language)
does support method overriding by extending the

1A class-based core like the one proposed in [31] would be more
appropriate to formalize methods and overriding.

The Computer Journal, Vol. , No. ,

6 F. Ortin

behavior described in [29]: when a message is passed
to a dynamic union type, it is checked that at least for
one possible signature, the actual argument types are
subtypes of the corresponding formal parameters; the
type of the method invocation expression is the union of
the return types declared by those methods that satisfy
the previous condition.

Although the var keyword is part of the concrete
syntax of type variables (included in C# 3.0 to
allow avoiding type specification of initialized local
variables [26]), the parser assigns them unique
sequential numbers (Xi metavariables range over type
variables). Type variables can be declared as dynamic
(dyn) or, by default, static (sta). Only intersection and
union types can also be qualified as dynamic or static.

Member types ([(id :IT)∗]) represent the collection
of fields an object may hold. Member types have been
introduced in constraints to define structural width
coercion of object types to member types (S-OMember
rule in Figure 11), because objects in StaDyn do not
define width subtyping (S-Object in Figure 11). This
subtyping relation is used in the constraint resolution
algorithm when function calls are type-checked (T-Inv
in Figure 17).

Type inference is specified with the general judgment
Γ; Ω ` E : T ‖ C; Γ′, meaning that under constraints C,
environment Γ, and context Ω, expression E has type
T , producing the output environment Γ′. Environments
(Γ) bind variables (identifiers) to types in the scope
represented by Γ, and they also bind type variables to
types (if type variables have been inferred). Γ holds
the environment before the scope of E, and Γ′ stores
the environment after typing E. Γ′ might differ from
Γ, containing inferred types of local variables and new
types bound to type variables inferred in E. Output
environments have already been used to define flow-
sensitive type systems [24], because type variables may
change their types depending on the control flow [32].

A context (Ω) stores the information of the function
being analyzed, in order to type-check its statements.
Ω.params saves the parameter list of the current function,
Ω.rt holds its declared return type, and Ω.tifp collects
the types inferred from function parameters (see
Section 3.2.2).

Figure 4 shows another example program of our core
language. Elements of the environment and generated
constraints are shown in the right part of the figure.
For example, in the scope of the main function in
Figure 4, Γ holds the assumptions Γ(increment):int,
Γ(list1):X18, and, in line 16, Γ(X18):{data:X20,
next:X21}, Γ(X20):bool and Γ(X21):int. Since
Γ(X20):bool in line 16, the statement in line 17 is
accepted by the type system. However in line 19 the
type of the object data field is changed to int and,
hence, line 20 compiles without any error, whereas line
21 is now erroneous. This example shows how a variable
can hold different types in the same scope, depending
on the execution flow. This is a common feature of

01: var createNode(var data, var next) { Γ(data):X10, Γ(next):X11
02: return new { data=data, next=next};
03: } Γ(createNode):X10×X11→X12 ║ {data:X10,next:X11} ≤ X12
04: void setData(var node, var data) { Γ(node):X13, Γ(data):X14
05: node.data = data; X13 ≤ [data:X15], X15 ← X14
06: } Γ(setData): X13×X14→void ║ X13 ≤ [data:X15], X15 ← X14
07: void clearList(var list, bool clear) { Γ(list):X16
08: if (clear)
09: list.next = 0; X16 ≤ [next:X17], Γ(X17)←int
10: } Γ(X17):X17∨int, Γ(clearList):X16xbool→void ║

X16 ≤ [next:X17], Γ(X17)←X17∨int
11: void main() {
12: var list1; Γ(list1):X18
13: var list2; Γ(list2):X19
14: int increment; Γ(increment):int
15: bool boolean; Γ(boolean):bool
16: list1 = createNode(true, 0); Γ(X18):{data:X20,next:X21},

Γ(X20):bool, Γ(X21):int
17: boolean = list1.data;
18: list2 = createNode(boolean, list1); Γ(X19):{data:X22,next:X18},

Γ(X22):bool
19: setData(list1, 3); Γ(X20):int
20: increment = list2.next.data + 1;
21: boolean = list1.data; // Compiler error
22: clearList(list2, false); Γ(X19):{data:X22,next:X18∨int},

Γ(X18):{data:X20,next:X21}
23: }

FIGURE 4. Example concrete program.

dynamically typed languages, but StaDyn offers it in a
statically typed way. This process has also been applied
to control structures (Section 3.2.6).

We also define two kinds of constraints (the last part
of Figure 3). Subtyping constraints (T ≤ T) require the
type on the left to be a subtype of (promote to) the type
on the right. Assignment constraints (TV ← T) not
only check that an assignment could be performed, but
they are also used to infer types, binding a type variable
to another type. Therefore, assignment constraints may
modify type variable bindings in type environments,
when function invocation expressions are checked. In
line 5 of Figure 4, a subtyping constraint is generated
for the node variable; it should be an object with a
data field, i.e., a subtype of a member type: X13 ≤
[data:X15]. This constraint must be statically fulfilled
wherever the function setData is called, e.g., line 19.
Line 5 is also an example of an assignment constraint
generation: X15 ← X14. When the setData function is
invoked, the data type of the node argument X15 will
be assigned the type of the data parameter X14. This
is the reason why X20 is then bound to int in line 19.

3.2.1. Functions
We use � to denote well-formedness. Inference rules in
Figure 5 not only check well-formedness, but they also
generate output environments and constraints that are
used for type-checking subsequent expressions. As an
example, T-Func adds the identifier of the function
being declared to the output environment. This
identifier type is now T1 × . . .× Tn → T ‖ C, denoting
that it is possible to type-check subsequent calls to
it. Function types include the constraint set (C) that
must be satisfied by the arguments at each invocation.
These constraints are those produced by the statements
within the function. For instance, the type expression
of the setData function in Figure 4 (line 6) has the two

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 7

(T-Func)

Ω.params = id1...idn,Ω.locals = idn+1...idn+m,Ω.rt = T,Ω.tifp = T1...Tn

id /∈ dom(Γ)
Γ; Ω ` T1 id1 : � ‖ ∅; Γ1... Γn−1; Ω ` Tn idn : � ‖ ∅; Γn

Γn; Ω ` Tn+1 idn+1 : �‖∅; Γn+1... Γn+m−1; Ω ` Tn+m idn+m : �‖∅; Γn+m

Γn+m; Ω ` S1 : � ‖ C1; Γn+m+1... Γn+m+l−1; Ω ` Sl : � ‖ Cl; Γn+m+l

Γn+m+l; Ω ` R : � ‖ Cl+1; Γn+m+l+1

Γ
′

= Γ, id : T1 × . . .× Tn → T ‖ C1 ∪ . . . ∪ Cl+1

Γ; ∅ ` T id(T1 id1...Tn idn) Tn+1 idn+1...Tn+m idn+m S1...Sl R : � ‖ ∅; Γ
′

(T-Decl)

id /∈ dom(Γ)
Γ
′

= Γ, id : T

Γ; Ω ` T id : � ‖ ∅; Γ
′

(T-Decls)

Γ; Ω ` D1 : � ‖ ∅; Γ1 . . .
Γn−1; Ω ` Dn : � ‖ ∅; Γn

Γ; Ω ` D1 . . . Dn : � ‖ ∅; Γn

(T-Funcs)

Γ; Ω ` F1 : � ‖ ∅; Γ1 . . .
Γn−1; Ω ` Fn : � ‖ ∅; Γn

Γ; Ω ` F1 . . . Fn : � ‖ ∅; Γn

FIGURE 5. Program, declarations and functions.

constraints X13 ≤ [data:X15] and X15 ← X14. The rest
of the rules in Figure 5 generate no constraint at all, and
output environments become the input of the following
terms, obtaining a flow-sensitive type checking.

3.2.2. Context
It is necessary to store information regarding a function
in order to subsequently perform type checking of
the terms in the function scope. This information
is saved in the function context (Ω) by means of T-
Func (Figure 5) and the rules shown in Figure 6.
At function declaration (T-Func), local variables are
stored in Ω.locals, parameters in Ω.params, and Ω.rt saves
the return type specified in the function declaration.
The types inferred from the type parameters are stored
in Ω.tifp (it will be described later why this information
is necessary to perform type-checking of assignments,
field accessing and array indexing). First, T-Func
(Figure 5) adds parameter types to Ω.tifp; in Figure 6,
Ω.tifp-Field inserts field types in Ω.tifp whenever an
object type is in Ω.tifp; Ω.tifp-Array and Ω.tifp-Inv
do the same with arrays and function calls, respectively.

Notice that not only type variables are inserted in
Ω.tifp. Objects are also added because they may
indirectly hold type variables in their fields. The same
happens with arrays, whose elements could be type
variables.

3.2.3. Basic Expressions
This subsection describes the type-checking of variables,
object field access, vector indexing, arithmetic, rela-
tional and logical expressions. Although assignments
and function calls are also expressions, they will be de-
scribed in Sections 3.2.5 and 3.2.7, respectively.

Figure 7 shows inference rules that type-check
variables. The tv predicate tests whether a type is
a type variable or not, and the ftv function returns
the set of unbound type variables in an environment.
T-Var types a variable previously declared, when its

(Ω.tifp-Field)

Γ; Ω ` E : {id1 : T1, . . . , idn : Tn} ‖ C; Γ
′

{id1 : T1, . . . , idn : Tn} ∈ Ω.tifp

include T1 . . . Tn in Ω.tifp

(Ω.tifp-Array)

Γ; Ω ` E : Array(T) ‖ C; Γ
′

Array(T) ∈ Ω.tifp

include T in Ω.tifp

(Ω.tifp-Inv)

Γ; Ω ` E1 : T1 ‖ C1; Γ1 . . . Γn−1; Ω ` En : Tn ‖ Cn; Γn

Γn; Ω ` id(E1, . . . , En) : T ‖ Cn+1; Γn+1

∃ i ∈ [1, n], Ti ∈ Ω.tifp

include T in Ω.tifp

FIGURE 6. Inference rules for Ω.

(T-Var)

Γ(id) : T
¬tv(T)

Γ; Ω ` id : T ‖ ∅; Γ

(T-BVar)

Γ(id) : X
Γ(X) : T

Γ; Ω ` id : T ‖ ∅; Γ

(T-PVar)

Γ(id) : X X ∈ ftv(Γ)
id ∈ Ω.params

¬lhsAssign(id)

Γ; Ω ` id : X ‖ ∅; Γ

(T-AVar)

Γ(id) : X X ∈ ftv(Γ)
id /∈ Ω.params

lhsAssign(id)

Γ; Ω ` id : X ‖ ∅; Γ

FIGURE 7. Variables.

type is not a type variable. When the type of an
identifier is a type variable and it is bound to another
type, T-BVar types the identifier to the type bound
to the type variable. This happens, for instance,
in line 17 of Figure 4, where the type variable of
list1 (X18) was previously bound to the object type
{data:X20,next:X21} in line 16.

Both T-PVar and T-AVar type-check identifiers
when their types are free type variables (not bound to
any other type). In the first case, the variable can be
used when it is a parameter (thus, it has a value) and
it is not the left-hand side of an assignment2. On the
other hand, T-AVar allows a free type variable that
is not a parameter to be used as an expression as long
as it is the left-hand side of an assignment (because
the type variable will be then bound to a type in the
subsequent expression). For example, the utilization
of the data parameter in line 2 of Figure 4 is allowed
because, despite its type is a free type variable (X10),
it is contained in Ω.params. list1 can be used in line 16
because, although its type (X18) is not in Ω.tifp, it is in
the left-hand side of an assignment.

Figure 8 shows the T-Arith inference rule of
arithmetic expressions (for the sake of brevity, relational
and logical expressions are not shown). Operands

2The StaDyn core does not allow assigning values to function
parameters in order to make type-checking easier. This
feature could be obtained by a syntactical transformation where
parameters are assigned to local variables, because parameters
in C# are passed by value—by default, when no ref and out

keywords are explicitly used.

The Computer Journal, Vol. , No. ,

8 F. Ortin

(T-Arith)

Γ; Ω ` E1 : T1 ‖ C1; Γ
′

Γ
′ ` T1 ≤ int ‖ C2; Γ

′′

Γ
′′

; Ω ` E2 : T2 ‖ C3; Γ
′′′

Γ
′′′ ` T2 ≤ int ‖ C4; Γ

′′′′

Γ; Ω ` E1 ⊕ E2 : int ‖ C1 ∪ C2 ∪ C3 ∪ C4; Γ
′′′′

(T-NObject)

Γ; Ω ` E1 : T1 ‖ C1; Γ1... Γn−1; Ω ` En : Tn ‖ Cn; Γn

Γ; Ω ` new {id1=E1, ..., idn=En}:{id1:T1, ..., idn:Tn} ‖ C1∪...∪Cn; Γn

(T-NArray)

Γ; Ω ` E : Te ‖ C1; Γ
′

Γ
′ ` Te ≤ int ‖ C2; Γ

′′

Γ; Ω ` new T [E][]1...[]n : Array1(...Arrayn(Array(T))) ‖ C1∪C2; Γ
′′

(T-Field)

Γ; Ω ` E : T ‖ C1; Γ
′

X fresh Γ
′ ` T ≤ [id : X] ‖ C2; Γ

′′

X ∈ ftv(Γ
′′

) ∧X /∈ Ω.tifp ⇒ lhsAssign(E.id)

Γ; Ω ` E.id : X ‖ C1 ∪ C2; Γ
′′

(T-Array)

Γ; Ω ` E1 : T1 ‖ C1; Γ
′

X fresh Γ
′ ` T1 ≤ Array(X) ‖ C2; Γ

′′

Γ
′′

; Ω ` E2 : T2 ‖ C3; Γ
′′′

Γ
′′′ ` T2 ≤ int ‖ C4; Γ

′′′′

X ∈ ftv(Γ
′′′′

) ∧X /∈ Ω.tifp ⇒ lhsAssign(E1[E2])

Γ; Ω ` E1[E2] : X ‖ C1 ∪ C2 ∪ C3 ∪ C4; Γ
′′′′

FIGURE 8. Basic expressions.

of arithmetic and relational expressions must be
subtypes of int; logical expressions should promote
to bool. Output environments are used as the
input environments of the subsequent expressions, the
one returned by the whole expression being the last
environment. The constraint set generated by each
expression is the union of all the constraints produced
by each of the four premise judgments.

The new object expression (T-NObject) infers an
object type comprising the field labels and types of
the corresponding expressions. Line 2 in Figure 4 is
an example of this inference rule, where the type of
the expression is {data:X10, next:X11}. In a similar
way, the T-NArray rule types the array construction
expressions. The expression that specifies the array size
must promote to integer. Only one-dimensional arrays
can be constructed at a time, and the type returned
is an array of the same dimensions as pairs of square
brackets. The type of the new expression in line 11,
Figure 9, is Array(X34), X34 being a new fresh type
variable.

When accessing object fields (T-Field), the object
should promote to the member type [id : X], X being a
new fresh type variable. A member type is an internal
type that denotes the set of fields an object should
hold. Therefore, an object promotes to a member
type following the same rules as structural subtyping
for objects described in [33] (rule S-OMember in
Figure 11). Moreover, if the object field is a free type
variable not inferred from the parameters, i.e., not in
Ω.tifp, it must be a direct left child of an assignment
expression. Line 42 in Figure 2 is an example of a
correct term. Although the dimensions field of the
point object is a free type variable and it is not the

01: void vector(var[] w) { Γ(w):Array(X30)
02: var[] v; Γ(v):Array(X31)
03: int a;
04: v = new var[2]; Γ(X31):X32
05: a = v[3]; // Compiler error
06: v[0] = w[0] = 0; Γ(X32):int, Γ(X30):X30∨int
07: v[1] = w[1] = true; Γ(X32):int∨bool, Γ(X30):X30∨int∨bool
08: }
09: void main() {
10: var[] ve; Γ(ve):Array(X33)
11: ve = new var[3]; Γ(X33):X34

12: ve[2] = new { attribute = 3 }; Γ(X34):{attribute:int}
13: vector(ve); Γ(X34):{attribute:int}∨int∨bool
14: }

FIGURE 9. Example use of arrays.

left-hand side of an assignment, its type is in Ω.tifp.
T-Array requires the first expression to be a

subtype of an array, and the index to be an integer.
As with objects, if the calculated type is a free
type variable, it should be the left-hand side of an
assignment. This predicate generates a compilation
error in line 5 of Figure 9. The type of the elements
of the v array is the free type variable X32, not inferred
from the parameters (v is a local variable), producing
a compilation error because no value has been assigned
to it.

3.2.4. Subtyping
Judgments in subtyping rules (Γ ` T1 ≤ T2 ‖ C; Γ′)
require an input environment (Γ) and generate a set of
constraints (C) and an output environment (Γ′). The
input environment is used to know the type variables
that might be bound to other types. In effect, the T-
TVBS rule in Figure 10 types any expression to the
type which is bound to the expression type variable.

The output environment is used to bind a type
variable to a type when the type variable must be
a subtype of a particular type. This is precisely
the behavior of the S-FTVL and S-FTVR rules in
Figure 11 that, in addition, generate a subtyping
constraint. An example expression where the S-FTVL
rule is applied is node.data in Figure 4, line 5. The
T-Field rule requires the type of node (the X13 free
type variable), to be a subtype of the member type
[data:X15]—X15 being a new fresh type variable. Then,
the S-FTVL rule generates a new X13 ≤ [data:X15]
constraint and binds [data:X15] to X13 in the output
environment Γ′.

S-FTVR offers the same functionality when a
concrete type must promote to a free type variable.
This rule is used in return statements inside functions
that return a type variable (e.g., line 2 in Figure 4).
When both type variables are not bound to any type,
only a subtyping constraint is produced (S-FTVs in
Figure 11).

The arrays (S-Array) and objects (S-Object) type
constructors are invariant. Array(T1) is a subtype of
Array(T2) when T1 and T2 are equivalent. T1 and
T2 are equivalent under the subtype relation, when
T1 ≤ T2 and T2 ≤ T1 (E-Types). An object promotes

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 9

(T-TVBS)

Γ; Ω ` E : X ‖ C; Γ
′

Γ
′
(X) : T

Γ; Ω ` E : T ‖ C; Γ
′

FIGURE 10. Type variable binding substitution.

to another one when both have the same number of
fields and equal field labels, and the corresponding types
are equivalent (S-Object).

Member types were introduced for structural subtyp-
ing of objects. An object type is a subtype of a member
type when the former has all the members of the latter,
and their corresponding types are structurally equiva-
lent (S-OMember). This rule is necessary in the ful-
fillment of subtyping constraints of function invocation
(Section 3.2.7). As an example, the setData function
in Figure 4 has the X13 ≤ [data : X15] constraint (line
6). When the function is called in line 19 passing the
{data : X20, next : X21} object as the first argument,
the S-OMember subtyping rule confirms that the ar-
gument promotes to the parameter.

Subtyping rules for union and intersection types are
an enhancement of the ones defined by other authors
such as [25] and [34] (S-SUnionL, S-SUnionR, S-
SInterR and S-SInterL), adding new dynamic typing
rules (S-DUnionL and S-DInterR)—[35] details this
new interpretation of union and intersection types. If
the type variable bound to a union type has been
declared as static, the set of operations that can be
applied to that union type are those accepted by every
type in the union type (S-SUnionL). However, if the
reference is dynamic, type-checking is more permissive.
In that case, it is possible to perform an operation
when it is accepted by at least one of the types in
the union type (S-DUnionL)—in the conclusion of
the rule, ∪Γi and ∪Ci represent the union of all the
Γi and Ci that fulfill the predicate in the premise.
If the operation cannot be applied to any type, a
type error will be generated even if the reference is
dynamic. This behavior can be seen in lines 18 and 19
of Figure 12. The type of both sta and din variables
is int∨bool, but sta is static whereas din is dynamic.
This difference prevents the arithmetic operation in line
18 from compiling (the plus operator cannot be applied
to a bool), while it is correct in line 19 (addition is
defined for integers).

In parallel, a type promotes to a static intersection
type only if it is a subtype of all the types collected by
the intersection type (rule S-SInterR). Similarly, we
have defined the dynamic behavior to be more lenient,
accepting the promotion when a type promotes to at
least one of the types in the intersection type (rule
S-DInterR). An example is the function call in line
71 of Figure 2: data of the list argument must be a
subtype of [dimensions:X1]∧[x:X2]∧[y:X3]∧[z:X4]; the
program is compiled only when the point parameter in

(S-Bool)

Γ ` bool ≤ bool ‖ ∅; Γ

(S-Int)

Γ ` int ≤ int ‖ ∅; Γ

(S-FTVL)

X ∈ ftv(Γ) T /∈ ftv(Γ)
C = X ≤ T Γ

′
= Γ, X : T

Γ ` X ≤ T ‖ C; Γ
′

(S-FTVR)

X ∈ ftv(Γ) T /∈ ftv(Γ)
C = T ≤ X Γ

′
= Γ, X : T

Γ ` T ≤ X ‖ C; Γ
′

(S-FTVs)

X1 ∈ ftv(Γ) X2 ∈ ftv(Γ) C = X1 ≤ X2

Γ ` X1 ≤ X2 ‖ C; Γ

(E-Types)

Γ ` T1 ≤ T2 ‖ C1; Γ
′

Γ
′ ` T2 ≤ T1 ‖ C2; Γ

′′

Γ ` T1 ≡ T2 ‖ C1 ∪ C2; Γ
′′

(S-Array)

Γ ` T1 ≡ T2 ‖ C; Γ
′

Γ ` Array(T1) ≤ Array(T2) ‖ C; Γ
′

(S-Object)

Γ ` T1 ≡ T
′
1 ‖ C1; Γ1 . . . Γn−1 ` Tn ≡ T

′
n ‖ Cn; Γn

Γ ` {id1:T1, ..., idn:Tn} ≤ {id1:T
′
1, ..., idn:T

′
n} ‖ C1 ∪ . . . ∪ Cn; Γn

(S-OMember)

∀ i ∈ [1,m], ∃ j ∈ [1, n], id
′
i = idj , Γi−1 ` T

′
i ≡ Tj ‖ Ci; Γi

Γ0 ` {id1:T1, ..., idn:Tn} ≤ [id
′
1:T
′
1, ..., id

′
m:T

′
m] ‖ C1 ∪ . . . ∪ Cm; Γm

(S-SUnionL)

∀ i ∈ [1, n],Γ ` Ti ≤ T ‖ Ci; Γi

Γ ` sta T1 ∨ . . . ∨ Tn ≤ T ‖ C1 ∪ . . . ∪ Cn; Γ1 ∪ . . . ∪ Γn

(S-SUnionR)

Γ ` T
i∈1..n

i ≤ sta T1 ∨ . . . ∨ Tn ‖ ∅; Γ

(S-DUnionL)

∃ i ∈ [1, n],Γ ` Ti ≤ T ‖ Ci; Γi

Γ ` dyn T1 ∨ . . . ∨ Tn ≤ T ‖ ∪ Ci;∪Γi

(S-SInterL)

Γ ` sta T1 ∧ . . . ∧ Tn ≤ T
i∈1..n

i ‖ ∅; Γ

(S-SInterR)

∀ i ∈ [1, n],Γ ` T ≤ Ti ‖ Ci; Γi

Γ ` T ≤ sta T1 ∧ . . . ∧ Tn ‖ C1 ∪ . . . ∪ Cn; Γ1 ∪ . . . ∪ Γn

(S-DInterR)

∃ i ∈ [1, n],Γ ` T ≤ Ti ‖ Ci; Γi

Γ ` T ≤ dyn T1 ∧ . . . ∧ Tn ‖ ∪ Ci;∪Γi

FIGURE 11. Subtyping and type equivalence.

line 38 is dynamic (two and three dimensional points
provide dimensions, x, and y fields), producing an error
in case it is static (the z field is not implemented by two
dimensional points).

It is worth noting that the definition of subtyping
is not complete for union and intersection types. We
include inference rules for neither dynamic union types
on the right-hand side (supertypes), nor dynamic
intersection types on the left-hand side (subtypes). This
is because the StaDyn core type system never type-
checks whether a dynamic intersection type is a subtype
of another type—they always appear in the right-hand
side of subtyping constraints—or any type promotes to
a dynamic union type—they are always checked to be
subtypes of another type.

The Computer Journal, Vol. , No. ,

10 F. Ortin

01: var getElement(var list, var fstOrSnd) {
02: var element;
03: if (fstOrSnd)
04: element = list.data;
05: else
06: element = list.next.data;
07: return element;
08: }
09: int increment(int value) {
10: return value + 1;
11: }

12: void main() {
13: int integer;
14: var listOfTwo, sta;
15: dyn var din;
16: listOfTwo = createNode(1,createNode(true,0));
17: din = sta = getElement(listOfTwo, true);
18: integer = sta + 1; // Compiler error
19: integer = din + 1;
20: increment(din); // Compiler error
21: }

FIGURE 12. Example use of dynamic and static references.

Since StaDyn does not yet support higher-order
functions (delegates in C# terminology), we do not
specify subtyping of the function type constructor.
Subtyping is not defined between member types either,
because they only appear in constraints. Therefore, the
current definition of the subtyping relation is neither
reflexive nor transitive.

3.2.5. Assignments
The abstract syntax in Figure 3 allows any expression
to be the left-hand side of an assignment. The type
system rejects all those expressions that cannot be used
in that context. Only identifiers, array indexing and
field access expressions can be the left-hand side of an
assignment. For the sake of brevity, we do not show
those rules.

The four inference rules in Figure 13 describe
assignment expressions. T-Assign types assignment
expressions when the left-hand side expression type is
not a type variable. This straightforward rule only
requires the right-hand side to be a subtype of the left-
hand side. In case the left-hand side is a type variable,
it will from now on be bound to the type of the right-
hand side expression (T-TVAssign).
T-FAssign types the assignment of an object field

when it is a type variable. As with the T-Field rule,
the object should be a subtype of a member type with
the specific field label. The new field type will be the
type of the right-hand side expression, regardless of
its previous type. Finally, if the field type has been
inferred from a parameter, a new assignment constraint
will be generated. This constraint will cause changing
the field type of the argument when the function is
called. An example of this kind of assignment constraint
generation is shown in the setData function in Figure 4
(X15 ← X14). Calling this function with an object as
the first argument (line 19) changes the type of the
argument’s data to the type of the second argument
(int), making the statement in line 20 correct.

For an array type whose elements are type variables
(T-AAssign), the new type of its elements will be a
union type comprising its previous type and the type
of the right-hand side. Therefore, the type of v in
line 8 of Figure 9 is an array of integers or booleans
(int∨bool) because it holds both. If the type variable

(T-Assign)

Γ; Ω ` E1 : T1 ‖ C1; Γ
′ ¬tv(T1)

Γ
′
; Ω ` E2 : T2 ‖ C2; Γ

′′
Γ
′′ ` sta T2 ≤ T1 ‖ C3; Γ

′′′

Γ; Ω ` E1 = E2 : T1 ‖ C1 ∪ C2 ∪ C3; Γ
′′′

(T-TVAssign)

Γ; Ω ` E1 : X ‖ C1; Γ
′

Γ
′
; Ω ` E2 : T ‖ C2; Γ

′′
Γ
′′′

= Γ
′′
, X : T

Γ; Ω ` E1 = E2 : T ‖ C1 ∪ C2; Γ
′′′

(T-FAssign)

Γ; Ω ` E1 : T1 ‖ C1; Γ
′

X fresh Γ
′ ` T1 ≤ [id : X] ‖ C2

Γ
′
; Ω ` E2 : T2 ‖ C3; Γ

′′
Γ
′′′

= Γ
′′
, X : T2

if T1 ∈ Ω.tifp, then C4 = X ← T2, else C4 = ∅
Γ; Ω ` E1.id = E2 : T2 ‖ C1 ∪ C2 ∪ C3 ∪ C4; Γ

′′′

(T-AAssign)

Γ; Ω ` E1[E2] : X ‖ C1; Γ
′

Γ
′
; Ω ` E3 : T ‖ C2; Γ

′′
Γ
′′′

= Γ
′′
, X : Γ

′′
(X) ∨ T

if X ∈ Ω.tifp, then C3 = X ← X ∨ Γ
′′

(X) ∨ T, else C3 = ∅
Γ; Ω ` E1[E2] = E3 : T ‖ C1 ∪ C2 ∪ C3; Γ

′′′

FIGURE 13. Assignments.

has been inferred from the function parameters, a
new assignment constraint will be generated including
the own type variable in the right-hand side of the
assignment. This is the case of the w variable in the
vector function (line 8 in Figure 9). Unlike the type
of v, the type of w (X30) is included in the union
type (X30 ∨ int ∨ bool), denoting that the type of the
actual parameter in the invocation will be included in
the union type. Therefore, the type of the elements
of ve when the function vector is called in line 13 is
{attribute:int}∨int∨bool.

3.2.6. Statements
The minimal core includes the return, if and while

statements (Figure 14). For the return statement, the
expression type to be returned must be a subtype of the
declared return type (T-Return).

Control-flow branches of if and while statements are
taken into consideration to keep the flow-sensitiveness
of our type system. The join of constraints and the
union of type environments take into consideration
this difficulty, taking the type information obtained on
each execution path and combining both into a single
constraint list and type environment. Each parameter

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 11

represents the type information of an exclusive control
flow. Since it might happen that the while body is not
executed at runtime (it is not exclusive), the empty
set is passed as its second argument (T-While). An
example use of the join function is the type of the
point variable ({x:int, y:int, dimensions:int} ∨
{x:int, y:int, z:int, dimensions:int})—line 10
in Figure 2—that is created from its types in
lines 7 ({x:int, y:int, dimensions:int}) and 9
({x:int, y:int, z:int, dimensions:int}). The same
happens with constraints: the joined constraint for
the point parameter of the distance3D function
(X1 ≤ [dimensions:X2] ∧ [x:X3] ∧ [y:X4] ∧ [z:X5])
is obtained from the constraints generated
in lines 42 (X1 ≤ [dimensions:X2]) and 43
(X1 ≤ [x:X3] ∧ [y:X4] ∧ [z:X5]).

The union of environments used in Figure 14
is also based on the join function described in
Figure 15: variable bindings must be the same in both
environments, and the resulting type variable binding
set is the join of the type variable binding sets of each
flow path.

(T-Return)

Γ; Ω ` E : T ‖ C1; Γ
′

Γ
′ ` T ≤ Ω.rt ‖ C2; Γ

′′

Γ; Ω ` return E : � ‖ C1 ∪ C2; Γ
′′

(T-If)

Γ; Ω ` E : T ‖ C
′
; Γ
′

Γ
′ ` T ≤ bool ‖ C

′′
; Γ
′′

Γ
′′

; Ω ` S1 : � ‖ C1; Γ1 . . . Γn−1; Ω ` Sn : � ‖ Cn; Γn

Γ
′′

; Ω ` Sn+1 : �‖Cn+1; Γn+1 . . . Γn+m−1; Ω ` Sn+m : �‖Cn+m; Γn+m

Γ; Ω ` if E S1 . . . Sn Sn+1 . . . Sn+m : � ‖
C
′ ∪ C

′′ ∪ join(C1 ∪ ... ∪ Cn, Cn+1 ∪ ... ∪ Cn+m); join(Γn,Γn+m)

(T-While)

Γ; Ω ` E : T ‖ C
′
; Γ
′

Γ
′ ` T ≤ bool ‖ C

′′
; Γ
′′

Γ
′′

; Ω ` S1 : � ‖ C1; Γ1 . . . Γn−1; Ω ` Sn : � ‖ Cn; Γn

Γ; Ω ` while E S1...Sn : � ‖ C
′∪C′′∪join(C1∪...∪Cn, ∅); join(Γn, ∅)

FIGURE 14. Statements.

Figure 15 shows the algorithm used to implement
the join function. Each set holds either constraints
(subtyping and assignment) or type variable bindings
(X:T in environments). The algorithm has been
defined employing the compare and union operations
defined by the axioms in Figure 16. The algorithm
takes elements of both sets, adding new union and
intersection types [25] to the return set. It first
processes the elements in the first set, and then those
included in the second set but not in the first one (÷).

As Figure 16 shows, comparisons between constraints
are based on the type in the constraint’s left-hand side.
This is because constraints are always generated with
a free type variable in its left-hand side. Definitions
of the compare and union operations in Figure 16
ensure that every constraint set will never have two
different constraints with the same left-hand side type
variable. The only statement that generates subtyping
constraints with a particular type on the left-hand side

join(Set1, Set2) ≡ Set in
Set← ∅
∀ elem1 ∈ Set1

if ∃ elem2 ∈ Set2, compare(elem1, elem2)
Set← Set ∪ union(elem1, elem2)

else
Set← Set ∪ union(elem1)

∀ elem ∈ Set2 ÷ Set1
Set← Set ∪ union(elem)

Set1 ÷ Set2 ≡ Set in
Set← ∅
∀ elem1 ∈ Set1

if 6 ∃ elem2 ∈ Set2, compare(elem1, elem2)
Set← Set ∪ elem1

FIGURE 15. The join algorithm.

(J-Compare)

compare(X1←T1, X1←T2) compare(X1≤T1, X1≤T2)

compare(X1:T1, X1:T2)

(J-Union)

union(X←T1, X←T2) = X ← T1∨T2

union(sta X≤T1, sta X≤T2) = X ≤ sta T1∧T2

union(dyn X≤T1, dyn X≤T2) = X ≤ dyn T1∧T2

union(X:T1, X:T2) = X : T1∨T2 union(X←T) = X←X∨T

union(sta X≤T) = sta X≤T union(dyn X≤T) = ∅

union(X:T) = X : X∨T

FIGURE 16. Comparison and union operations.

is the return statement. However, this statement
cannot appear in a control flow statement because of
the AST transformation described in Section 3.1.

Joins of assignment constraints and type variable
bindings create a union type consisting of the two types
in each execution path. However, subtyping constraints
are joined in a new intersection type. If a static
reference should promote to T1 in one flow path and be
a subtype of T2 in the other, it must then be a subtype
of both (subtype of the intersection type).

The union function is also defined for constraints
or type variable bindings generated in only one of the
optional execution paths (last four axioms in Figure 16).
The union of a single static subtyping constraint is the
own constraint, because static typing must check every
possible flow of execution. However, if the type variable
is dynamic, there is no resulting constraint because it
has been produced in a single optional execution path
and, since it is dynamic, the constraint fulfillment is
not mandatory. In assignment constraints and type
variable bindings, the type to be bound is included in
the right-hand side of the assignment. This means that
the type variable will be bound to a new union type
including the type it was previously bound to, because
a new type could be assigned to the existing one in an
optional control flow. As an example, the next field of
the list variable (X17) has the type X17∨int in line

The Computer Journal, Vol. , No. ,

12 F. Ortin

(T-Inv)

shift(Γ(id)) : Tp1 × . . .× Tpn → T ‖ C
∀ i ∈ [1, n],Γi ` Ei : Ti ‖ Ci; Γi+1 ∀ i ∈ [1, n], Ti /∈ ftv(Γi+1)

∀ i ∈ [1, n],Γn+i ` sta Ti ≤ Tpi ‖ Cn+i; Γn+i+1

Γ2n+2 C; Γ2n+1

Γ1 ` id(E1 . . . En) : Γ2n+2(T) ‖ C1 ∪ . . . ∪ C2n; Γ2n+2

(T-FTVInv)

shift(Γ(id)) : Tp1 × . . .× Tpn → T ‖ C
∀ i ∈ [1, n],Γi ` Ei : Ti ‖ Ci; Γi+1 ∃ i ∈ [1, n], Ti ∈ ftv(Γi+1)

∀ i ∈ [1, n],Γn+i ` sta Ti ≤ Tpi ‖ Cn+i; Γn+i+1

Γ1 ` id(E1 . . . En) : T ‖ C ∪ C1 ∪ . . . ∪ C2n; Γ2n+1

FIGURE 17. Function invocation.

10 of Figure 4. This implies that the type of list2 in
line 22 is converted from {data:X22, next:X18} (being
Γ(X18):{data:X20, next:X21}) to {data:X22, next:X18∨
int}. The result is that the next field is changed
because one possible flow of execution in the clearList
function may change its type to int.

3.2.7. Function Invocation
Figure 17 shows the two inference rules of function
invocation. The difference is in the existence of free
type variable arguments (T-Inv if there is no free type
variable argument, and T-FTVInv otherwise). In both
cases, the shift function takes a function type and
returns an equivalent one, renaming the numbers of
type variables to new fresh type variables. This process
permits multiple invocations of the same function,
creating new type variables for each function invocation.
On each invocation, the types of the arguments are
checked to be subtypes of the parameter types.

If no argument is a free type variable, constraints
resolution is performed. The judgment Γs C,Γ means
that under the Γ input environment, Γs is a solution
for C; i.e., Γs holds all the substitutions to fulfill C
under the Γ environment. In that case, the type of
the function call is the substitution Γ2n+2(T), where
Γ2n+2 is a solution for C. Under these circumstances,
the C constraint set is solved and, hence, it is not
included in the constraints generated by the function
call. This shows how constraint resolution is part of
the type inference process (it is not global, i.e., it
is not performed after traversing the whole AST). If
any argument is a free type variable, C is added to
the constraint set produced by a function invocation
expression (T-FTVInv).

The constraint resolution algorithm implemented
is an adaptation of the algorithm defined by Aiken
and Wimmers [28] that performs inclusion constraint
resolution using union and intersection types. Its
detailed description can be consulted in [36].

3.2.8. Converting Implicit to Explicit Types
Our language defines an automatic conversion of
dynamic implicitly typed union types to explicit
(particular) types (in assignments and function calls).

When the union type is static, the subtyping rules
described in Section 3.2.4 require types in the union
type to promote to the explicit type. However, if the
implicit type is dynamic, the conversion is too lenient
because only one single promotion is necessary to allow
the conversion. This is why a static promotion is forced
in both assignments (rule T-Assign in Figure 13) and
function invocations (rules T-Inv and T-FTVInv in
Figure 17). As an example, the din variable (typed
dyn int∨bool in line 20 of Figure 12) is passed as
an argument to the increment function that explicitly
requires its value parameter to be int. Therefore,
a compilation error is generated even though the
argument is dynamic, because the value parameter is
explicitly typed (and, hence, static).

4. ERASURE TRANSLATION

The objective of this section is twofold. First, to
describe the translation templates used to generate
code for the .Net platform employing the static type
information gathered by the compiler. Second, based
on the semantics of C# [37], to describe the erasure
semantics of the minimal core of StaDyn.

The StaDyn core may be translated into C# following
either of two implementation styles: first, by type-
passing, augmenting the runtime system to carry
information about type parameters; second, by erasure,
removing all information about type parameters at
runtime [31]. We have used the second approach,
giving an erasure mapping from the StaDyn minimal
core into C#. This style corresponds to the current
implementation of StaDyn, which is compiled into
the .Net platform by generating IL code (before the
executable files), maintaining no information about
type parameters at runtime—here we describe the
translation to C# for simplicity. Figure 18 shows an
example translation that will be used throughout this
section. The StaDyn core source code is shown on the
left, while the corresponding output C# program is
displayed on the right.

The translation is performed traversing the AST.
This traversal is performed after type checking, where
the AST nodes were annotated with their types and
a copy of the state of the type environment (Γ) and
context (Ω) in the conclusion of each typing rule
(written Γnode and Ωnode).

4.1. Type Erasure

The erasure of a type in the StaDyn core is the
corresponding C# type that we will use in the code
generation process. Since type erasures depend on
environments (Γ), we write |T |Γ for the erasure of the
type T with respect to the environment Γ. Translation
rules insert type casts when necessary using the type
information obtained by the compiler, and omitting
them when it is trivially safe to do so, e.g., when the

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 13

 01: using System
 02: class AC_int_x_int_y {
 03: public int x;public int y;
 04: }
 05: class AC_int_x_int_y_int_z {
 06: public int x; public int y; public int z;
 07: }
 08: public class MainClass {
dyn var point2D(int x, int y) { 09: static AC_int_x_int_y point2D(int x, int y) {
 10: object _temp;
 return new { x=x, y=y}; 11: return new AC_int_x_int_y {x=x, y=y};
} 12: }
dyn var point3D(int x, int y, int z) { 13: static AC_int_x_int_y_int_z point3D(int x, int y, int z) {
 14: object _temp;
 return new { x=x, y=y, z=z}; 15: return new AC_int_x_int_y_int_z {x=x, y=y, z=z};
} 16: }
dyn var point(dyn var dim, dyn var x,
 dyn var y, dyn var z) {

17: static object point(int dim, int x, int y, int z) {

 18: object _temp;
 dyn var result; 19: object result;
 if (dim==2) 20: if (dim == 2)
 result = point2D(x,y); 21: result = point2D(x, y);
 else 22: else
 result = point3D(x,y,z); 23: result = point3D(x, y, z);
 return result; 24: return result;
} 25: }
void main() { 26: public static void Main() {
 27: object _temp;
 var sta; 28: object sta;
 dyn var din; 29: object din;
 sta = point(2, 0, 4, 3); 30: sta = point(2, 0, 4, 3);
 din = point(3, 0, 4, 3); 31: din = point(3, 0, 4, 3);
 sta.x + 32: _temp = ((_temp=sta) is AC_int_x_int_y ?

 (int)(((AC_int_x_int_y)_temp).x) :
 (int)(((AC_int_x_int_y_int_z)_temp).x)) +

 din.y 33: ((_temp=din) is AC_int_x_int_y ?
 (int)(((AC_int_x_int_y)_temp).y) :
 _temp is AC_int_x_int_y_int_z ?
 (int)(((AC_int_x_int_y_int_z)_temp).y) :
 (int)(_temp.GetType().GetField("y").GetValue(_temp))) *

 * din.z; 34: ((AC_int_x_int_y_int_z)din).z;
} 35: }

 36: }

StaDyn core (source) C# (destination)

FIGURE 18. Example translation from StaDyn core to C#.

top type in C#, object, is the erased type that an
expression should have.

|int|Γ = int |bool|Γ = bool |void|Γ = void

|Array(T)|Γ = |T |Γ[]

X ∈ ftv(Γ)

|sta X|Γ = |dyn X|Γ = object

Γ(X) : T

|sta X|Γ = |dyn X|Γ = |T |Γ
|sta T1 ∨ . . . ∨ Tn|Γ = |dyn T1 ∨ . . . ∨ Tn|Γ = object

|sta [id1:T1, . . . , idn:Tn]|Γ = |dyn [id1 : T1, . . . , idn : Tn]|Γ
= object

|sta {id1:T1, . . . , idn:Tn}|Γ = |dyn {id1:T1, . . . , idn:Tn}|Γ
= AC |T1|Γ id1 . . . |Tn|Γ idn

where id1 . . . idn are lexicographically ordered, and
in AC |T1|Γ id1 . . . |Tn|Γ idn,
T []1 . . . []n is replaced with T n

FIGURE 19. Type erasure definition.

Figure 19 shows type erasures of the StaDyn minimal
core. Function and intersection type erasures are not
used in our translation rules, because our language does
not support high-order functions, and intersection types
only appear in constraints (no code is generated for
them).

4.2. Anonymous Classes

As shown in Figure 19, an anonymous class
(AC |T1|Γ id1 . . . |Tn|Γ idn) is the type erasure of each
different object structure. Since subtyping rules in our
language require two objects to have the same struc-
ture (S-Object), we create a unique anonymous class for
each object structure. To do so, the name of the anony-
mous class is the concatenation of each field name (lex-
icographically ordered) followed by its type erasure—
arrays T []1 . . . []n are replaced with T n because square
brackets are not allowed in C# identifiers.

These anonymous classes are generated in the first
traversal (J KAC), after type-checking the AST. The
visit of each AST node receives the set of classes that
have already been declared. Starting from the AST

The Computer Journal, Vol. , No. ,

14 F. Ortin

root node (P), this set is passed from each node to
their descendants. The only nodes that generate a new
class declaration are the object type and the new object
expression. The following translation template shows
the anonymous class generation for the latter node.

AC |T1|Γ id1 . . . |Tn|Γ idn /∈ classes

JE = new {id1=E1, . . . , idn=En}KAC(classes) ,
classes← classes ∪AC |T1|ΓE id1 . . . |Tn|ΓE idn
class AC |T1|ΓE id1 . . . |Tn|ΓE idn {

public |T1|ΓE |id1|ΓE ;

. . .
public |Tn|ΓE |idn|ΓE ;

}
where ΓE1 ; ΩE1 ` E1 : T1 . . . ΓEn ; ΩEn ` En : Tn,

id1 . . . idn are lexicographically ordered, and
in AC |T1|Γ id1 . . . |Tn|Γ idn,
T []1 . . . []n is replaced with T n

Figure 18 shows how two anonymous classes (lines 2 to 7
of the C# code on the right) are created in the traversal of
two new object nodes (lines 11 and 15 of the StaDyn core
code on the left).

The second scenario where an anonymous class declara-
tion is generated is when an object type is used and its class
has not been previously declared.

AC |T1|Γ id1 . . . |Tn|Γ idn /∈ classes

JT = {id1:T1, . . . , idn:Tn}KAC(classes) ,
classes← classes ∪AC |T1|ΓT id1 . . . |Tn|ΓT idn
class AC |T1|ΓT id1 . . . |Tn|ΓT idn {

public |T1|ΓT |id1|ΓT ;

. . .
public |Tn|ΓT |idn|ΓT ;

}
where id1 . . . idn are lexicographically ordered, and

in AC |T1|Γ id1 . . . |Tn|Γ idn,
T []1 . . . []n is replaced with T n

4.3. Translation of Programs

The translation of a program consists of the import of the
main .Net namespace (System) followed by the declaration
of anonymous classes (J KAC) (passing an empty set of
classes) and the final generation of code (J KCG).

JP Kprogram , import System ;

JP KAC(∅)
JP KCG

Code generated for a program (JP KCG) consists of a C#
public class (MainClass) followed by two helper setValue

methods (explained in Sections 4.7 and 4.8). Each function
is translated into a corresponding static C# method, and
the main declarations and statements are placed inside
the program’s entry point (the C# Main method of the
MainClass)—the example translation in Figure 18 omits the
two setValue methods.

JP = F1 . . . Fn D1 . . . Dm S1 . . . SlKCG ,
public class MainClass {
private static object setValue(object obj,

string id, object value) {

obj.GetType().GetField(id).SetValue(obj,value);

return value;

}
private static object setValue(Array array,

object value, int index) {
array.SetValue(value, index);

return value;

}
JF1KCG . . . JFnKCG

public static void Main() {
object temp;

JD1KCG . . . JDmKCG

statement(S1) . . . statement(Sl)
}

}

Since not every single expression is a valid statement
in C#, we define the statement function to generate
an artificial assignment to a temporary reference (temp),
converting an expression into a valid C# statement when
necessary.

Definition 4.1. Given a statement node S, we define:

statement(S) ≡

temp=JSKCG; if S is E and

S 6= E1=E2 and
S 6= id(E∗)

JSKCG; otherwise

4.4. Declarations

The .Net platform forces the declaration of each single
variable with a unique type. We could simply declare
variables and function parameters with their type erasures.
However, this would generate many unnecessary casts. As
an example, if a free type variable parameter is always used
as an integer it is better to declare it as int rather than
as object—its type erasure—(examples are the x, y and
z parameters of the point function in Figure 18). This
involves a faster execution because no cast will be generated.

For this purpose, we define the J Ktypes traversal of
the AST that collects all the possible types which a local
variable may have in a function scope. Notice that this type
collection is not the output environment obtained after type
checking every function body, because our type system is
flow sensitive: types bound to type variables change while
type checking is performed. The types traversal returns an
environment with all the possible types a local variable may
have in a specific function. If a variable has more than one
type, a union type is then used to represent its least upper
bound.

Definition 4.2. Given two environments Γ1 and Γ2, we
define:

Γ1 ∨ Γ2 ≡ Γ in Γ← Γ1

∀ id:T ∈ Γ2, add(id, T,Γ)
∀ X:T ∈ Γ2, add(X,T,Γ)

Definition 4.3. Given a type variable or identifier x, a
type T , and an environment Γ, we define:

add(x, T,Γ) ≡
{

Γ← Γ, x : T if x /∈ dom(Γ)
Γ← Γ, x : Γ(x) ∨ T otherwise

To obtain all the possible types of a local variable, it
is also necessary to know the actual C# types of the

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 15

generated global functions. As an example, the x, y and z

parameters in the point function (Figure 18) are only used
in function invocations (lines 21 and 23). Since parameters
of both point2D and point3D were declared as int in the
C# destination code, the three point function parameters
should also be declared as integers. Consequently, we define
the types traversal not only returning the Γ of local variables,
but also receiving the Γ that holds the type of every global
function.

Once we obtain all the possible types of each local
variable, we can pass them as a parameter to the translation
process in order to optimize the generated C# code.
Therefore, the J KCG code generation function will from now
on receive a Γ parameter. This parameter contains all the
possible types of each local variable in the current scope,
plus the C# types of the previously declared functions.
We should then extend the code generation template for
a program, adding the following code to the translation
scheme shown above (the statement function—Definition
4.1—has also been extended with the appropriate Γlocal

parameter):

JP = F1 . . . Fn D1 . . . Dm S1 . . . SlKCG ,
Γglobal ← ∅
Γlocal1 ← JF1Ktypes(Γglobal)
JF1KCG(Γlocal1 ∨ Γglobal)
. . .
Γlocaln ← JFnKtypes(Γglobal)
JFnKCG(Γlocaln ∨ Γglobal)
Γlocalmain ← JD1 . . . Dm S1 . . . SlKtypes(Γglobal)
JD1KCG(Γlocalmain ∨ Γglobal)
. . .
JDmKCG(Γlocalmain ∨ Γglobal)
statement(S1,Γlocalmain ∨ Γglobal)
. . .
statement(Sl,Γlocalmain ∨ Γglobal)

We now define how types of local variables are obtained,
i.e., the J Ktypes traversal. Local types in declarations
and statements are the union (Definition 4.2) of the local
environments they return.

JD1 . . . Dm S1 . . . Sl RKtypes(Γglobal) ,
return JD1Ktypes(Γglobal) ∨ . . . ∨ JDmKtypes(Γglobal) ∨

JS1Ktypes(Γglobal) ∨ . . . ∨ JSlKtypes(Γglobal) ∨
JRKtypes(Γglobal)

For functions, the union of their parameters, declarations
and statements are added to the local environment. Besides,
the function type is added to the global environment,
taking its parameter types (and return type) from the local
environment. That is, the function type added to Γglobal

holds the generated C# type—not the one inferred by the
compiler.

JF=ST id(ST1 id1...STn idn)D1...Dm S1...Sl RKtypes(Γglobal) ,
Γlocal ← id1:T1...idn:Tn ∨ JD1...Dm S1...Sl RKtypes(Γglobal)
Γglobal ← Γglobal ∨ id:T ′1 × . . .× T ′n → T ′

return Γlocal

where ΓF; ΩF ` id : T1 × . . .× Tn → T ,
Γlocal; ΩF ` id1:T ′1, . . . Γlocal; ΩF ` idn:T ′n, and

T ′ =

{
Γlocal(T) if T ∈ dom(Γlocal)
T otherwise

The rest of the code generation templates follow the same
structure, returning the union of the Γs returned by its
descendants. In addition, if one expression must have a
specific type (e.g. integer in arithmetic expressions) and the
type inferred is a type variable, that specific type is then
added to a union type bound to the type variable.

Jif E S1 . . . Sn Sn+1 . . . Sn+mKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if ΓE; ΩE ` E : X

add(X, bool,Γlocal)
return Γlocal ∨ JS1Ktypes(Γglobal) ∨ . . .

∨ JSnKtypes(Γglobal) ∨ JSn+1Ktypes(Γglobal) ∨ . . .
∨ JSn+mKtypes(Γglobal)

Jwhile E S1 . . . SnKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if ΓE; ΩE ` E : X

add(X, bool,Γlocal)
return Γlocal ∨ JS1Ktypes(Γglobal) ∨ ...

∨ JSnKtypes(Γglobal)

Jreturn EKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if tv(ΩE.rt)

add(ΩE.rt , T,Γlocal)
return Γlocal

JST idKtypes(Γglobal) , return id:ST

JidKtypes(Γglobal) , return ∅

JE1 ⊕ E2Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ JE2Ktypes(Γglobal)
if ΓE1 ; ΩE1 ` E1 : X1

add(X1, int,Γlocal)
if ΓE2 ; ΩE2 ` E2 : X2

add(X2, int,Γlocal)
return Γlocal

JE1=E2Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ JE2Ktypes(Γglobal)
if ΓE1 ; ΩE1 ` E1 : X1

add(X1, T2,Γlocal)
return Γlocal

where ΓE2 ; ΩE2 ` E2 : T2

JE1[E2]Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ JE2Ktypes(Γglobal)
if ΓE1 ; ΩE1 ` E1 : X1

add(X1, Array(T),Γlocal)
if ΓE2 ; ΩE2 ` E2 : X2

add(X2, int,Γlocal)
return Γlocal

where ΓE1[E2]; ΩE1[E2] ` E1[E2] : T

JE.idKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if ΓE ; ΩE ` E : X

add(X, [id:T],Γlocal)
return Γlocal

Jnew ST [E]([])∗Ktypes(Γglobal) , return JEKtypes(Γglobal)

Jnew {id1=E1, . . . , idn=En}Ktypes(Γglobal) ,
return JE1Ktypes(Γglobal) ∨ . . . ∨ JEnKtypes(Γglobal)

JtrueKtypes(Γglobal) = JfalseKtypes(Γglobal) =

The Computer Journal, Vol. , No. ,

16 F. Ortin

JIntLiteralKtypes(Γglobal) , return ∅

In the invocation expression, the function type is taken
from Γglobal rather than from the inferred type, reducing the
number of casts in the generated code.

Jid(E1 . . . En)Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ . . . ∨ JEnKtypes(Γglobal)
∀ i ∈ [1, n]

if ΓEi ; ΩEi ` Ei : Xi

add(Xi, Ti,Γlocal)
return Γlocal

where Γglobal(id) : T1 × . . .× Tn → T

Finally, we can now define the J KCG template for local
variable declarations, using the type erasures of the types
inferred in the local scope.

JD = ST idKCG(Γlocal) , |T |Γlocal id ;

where Γlocal; ΩD ` id : T

Following the same process, each function is translated to
a private static method in C#. The return type and the
types of the parameters are the erasures of the types held
in the local Γ. The return statement is the last one to be
generated.

JF=ST id(ST1 id1...STn idn) D1...Dm S1...Sl RKCG(Γlocal) ,
static |T ′|Γlocal id(|T

′
1|Γlocal id1, . . . ,|T ′n|Γlocal idn) {

object temp;

JD1KCG(Γlocal) . . . JDmKCG(Γlocal)
statement(S1,Γlocal) . . . statement(Sl,Γlocal)
JRKCG(Γlocal)

}
where Γlocal; ΩF ` id1 : T ′1, . . . ,Γlocal; ΩF ` idn : T ′n, and

Γlocal; ΩF ` id : Tp1 × . . .× Tpn → T ′

4.5. Basic Expressions

To optimize runtime performance of the generated code, we
define the J KCG traversal for expressions returning the type
erasure of the generated expression. This makes it easier
to reduce the number of unnecessary casts. Following this
scheme, code generation of basic expressions is defined as
follows:

JtrueKCG(Γlocal) , true

return bool

JfalseKCG(Γlocal) , false

return bool

JIntLiteralKCG(Γlocal) , IntLiteral
return int

JidKCG(Γlocal) , id
return |T |Γlocal

where Γlocal; Ωid ` id : T

Notice that the type erasure of the identifier is taken from
the local environment, returning the least upper bound of
all its possible C# types in the local scope.

Definition 4.4. Given two type erasures T1 and T2, an
expression node E, and an environment Γ, we define:

cast(T1, T2, E,Γ) ≡
((T2)JEKCG(Γ)) if T1 6= T2 and T2 6= object and

not(T2=Array and T1=T ([])+)
(JEKCG(Γ)) otherwise

The cast function generates code for the E expression
including a cast when necessary. In case the types are the
same, or the destination is object, or an array type is cast
to the .Net Array type, the cast will not be generated.

To avoid generating unnecessary object type erasures for
the types inferred by the compiler, we use the following
properties of union types:

T ∨ T −→ T
T1 ∨ T2 ≡ T2 ∨ T1

(T1 ∨ T2) ∨ T3 ≡ T1 ∨ (T2 ∨ T3) −→ T1 ∨ T2 ∨ T3

Array(T1) ∨Array(T2) −→ Array(T1 ∨ T2)

{id1:T1, ..., idn:Tn} ∨ [idi:Ti]
i∈[1,n] −→ {id1:T1, ..., idn:Tn}

[id1:T1, ..., idn:Tn] ∨ [idi:Ti]
i∈[1,n] −→ [id1:T1, ..., idn:Tn]

If a type already exists in a union type, it is not added.
Union types are commutative, and nesting is avoided. A
union of arrays is represented with an array of unions; this
way, the union of objects will not be erased to the object

type. If all the field labels in a member type exist in an
object type and the corresponding types are equal, the
member type can be deleted from the union type. The
previous property also holds for member types.

We now define the generation of arithmetic expressions
(logical and relational ones are similar). The first operand
is translated to C# and, if necessary, a cast to integer is
inserted. If the type of one of the operands is dynamic and
it is not a subtype of int, an InvalidCastException will be
thrown by the CLR at runtime. The generated code does
not perform extra type checking at runtime because it is
already done by the CLR.

JE1 ⊕ E2KCG(Γlocal) ,
cast(T1, int, E1,Γlocal) op⊕ cast(T2, int, E2,Γlocal)
return int

where T1 = JE1KCG(Γlocal), T2 = JE2KCG(Γlocal),
op+ = +, op− = -, op∗ = *, and op/ = /

At function invocation, each argument is converted to the
corresponding parameter type. These parameter types are
taken from the environment parameter (Γlocal). Therefore,
the arguments may be cast to the actual C# types of the
declared function. For instance, although the type erasure
of the four parameters of the point function (Figure 18) is
object, all of them were declared as integers. Therefore,
arguments of any point function call should be cast to int,
when necessary. The return type erasure follows the same
process.

Jid(E1 . . . En)KCG(Γlocal) ,
id(cast(T1, |Tp1 |Γlocal , E1,Γlocal), . . . ,

cast(Tn, |Tpn |Γlocal , En,Γlocal))
return |T |Γlocal

where T1 = JE1KCG(Γlocal), . . . , Tn = JEnKCG(Γlocal), and
Γlocal(id) = Tp1 × . . .× Tpn → T

In assignments, the type erasure of the right-hand side
must be converted to the type erasure of the left-hand side.

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 17

JE1=E2KCG(Γlocal) ,
JE1KCG(Γlocal) = cast(T2, T1, E2,Γlocal)
return T1

where T1 = JE1KCG(Γlocal), T2 = JE2KCG(Γlocal)

Objects are created by calling the default constructors
of their corresponding anonymous classes, and arrays
allocation is translated into its analogous C# syntax.

JE = new {id1=E1, . . . , idn=En}KCG(Γlocal) ,
new AC |T1|ΓE id1 . . . |Tn|ΓE idn {

id1=JE1KCG(Γlocal), . . . , idn=JEnKCG(Γlocal)
}

return AC |T1|ΓE id1 . . . |Tn|ΓE idn
where id1 . . . idn are lexicographically ordered, and

in AC |T1|Γ id1 . . . |Tn|Γ idn,
T []1 . . . []n is replaced with T n

JE = new ST[E1][] . . . []KCG(Γlocal) ,
new |ST |ΓE [JE1KCG(Γlocal)][] . . . []

return |ST |ΓE [][] . . . []

4.6. Statements

In the if and while statements, the condition expression is
checked to be bool. The rest of the translation process is
similar to the code in functions.

Jif E S1 . . . Sn Sn+1 . . . Sn+mKCG(Γlocal) ,
if (cast(T,bool, E,Γlocal)) {

statement(S1,Γlocal) . . . statement(Sn,Γlocal)
}
else {

statement(Sn+1,Γlocal) . . . statement(Sn+m,Γlocal)
}

where T = JEKCG(Γlocal)

Jwhile E S1 . . . SnKCG(Γlocal) ,
while (cast(T,bool, E,Γlocal)) {

statement(S1,Γlocal) . . . statement(Sn,Γlocal)
}

where T = JEKCG(Γlocal)

Jreturn EKCG(Γlocal) , return JEKCG(Γlocal)

4.7. Field Access

In the first scenario, the expression is an object type and
the field can be obtained directly.

ΓE ; ΩE ` E : {id1:T1, . . . , idn:Tn}

JE.idiKCG(Γlocal) ,
cast(T, |{id1:T1, . . . , idn:Tn}|ΓE , E,Γlocal) . idi
return |Ti|ΓE

where T = JEKCG(Γlocal)

In case no type information has been gathered by the
compiler, the field value is obtained using reflection. The
same happens when it is only known that it is an object
with the appropriate field, not knowing its specific type,
i.e., it is a member type.

ΓE ; ΩE ` E : T T ∈ ftv(ΓE) or T = [..., idi:Ti, ...]

JE.idiKCG(Γlocal) ,

(temp=JEKCG(Γlocal)).GetType()

.GetField("idi").GetValue(temp)

return object

Under the same circumstances, if a field value is modified
with the assignment operator, the setValue helper method
is used. The setValue method simply returns the field
value after the assignment. This method is necessary for
generating a valid C# expression, because the SetValue

method of the .Net’s reflection API does not return any
value.

ΓE1 ; ΩE1 ` E1 : T T∈ftv(ΓE1) or T=[..., idi:Ti, ...]

JE1.idi = E2KCG(Γlocal) ,

setValue(JE1KCG(Γlocal),"idi",JE2KCG(Γglobal))
return object

In the case of static union types, the generated
code is optimized using the type information gathered
statically. We use the ternary conditional operator to
dynamically check the actual type from all the possible ones
inferred by the compiler3. At runtime, this conditional
code is significantly faster than reflection, which is the
implementation of dynamic typing for both C# and Visual
Basic [38, 39]. If the union type holds one (or more) free type
variables, the last alternative in the conditional expression
obtains the field value using reflection. Since this is the
slowest alternative, we generate it as the last option in order
to optimize runtime performance of the generated code.

ΓE ; ΩE ` E : sta T1 ∨ ... ∨ Tn ΓE.id; ΩE.id ` E.id : T

JE.idKCG(Γlocal) ,
∀ i ∈ [1, n], Ti /∈ ftv(ΓE)

if it is not the last iteration or ∃ j∈[1, n], Tj∈ftv(ΓE){
temp=JEKCG(Γlocal) if it is the first iteration
: temp otherwise

is |Ti|ΓE ?

(|T |ΓE.id)((|Ti|ΓE) temp).id
if ∃ i ∈ [1, n], Ti ∈ ftv(ΓE)
:(|T |ΓE.id)(temp.GetType().GetField("id")

.GetValue(temp))

return |T |ΓE.id

An example of the previous code generation template
can be seen in line 32 of Figure 18. The type of sta is
{x:int, y:int} ∨ {x:int, y:int, z:int}. In the first iteration,
the object expression (sta) is assigned to temp and it
is checked whether it is {x:int, y:int}. If so, a cast is
performed and the x field is obtained. The second condition
is similar, but asking for the {x:int, y:int, z:int} type.
Since the union type does not hold any free type variable,
reflection is not used in another last condition.

When the expression type is dynamic, it should be taken
into consideration that there may be types in the union
type that do not provide the expected field. The first
optimization consists in generating code only for those types
that accept the specific field access operation, using the
ternary conditional operator. A performance benefit is
obtained because the generated code only checks for those
types that are applicable. The last alternative generated

3We use reflection when the number of types in the union type
is greater than 120. We have measured that reflection is faster
when the number of elements in a union type is more than 146.

The Computer Journal, Vol. , No. ,

18 F. Ortin

is reflection. At runtime, if the field is still not found, a
runtime exception will be thrown. This may happen when
dynamic references are used, because it is not guaranteed
that the field actually exists. Another final optimization
is implemented when only one possible type fulfills the
condition. In this case, a direct access to the field is
generated (an InvalidCastException could be raised by the
CLR).

ΓE ; ΩE ` E : dyn T1 ∨ ... ∨ Tn ΓE.id; ΩE.id ` E.id : T

JE.idKCG(Γlocal) ,

if only one T
i∈[1,n]

i fullfils ΓE ; ΩE ` Ti≤[id:T ′i] (T ′i fresh)
and Ti /∈ ftv(ΓE.id)

cast(TE , |Ti|ΓE , E,Γlocal) . id
return |T |ΓE.id

else
∀ i ∈ [1, n], ΓE ; ΩE ` Ti ≤ [id : T ′i] (T ′i fresh)

and Ti /∈ ftv(ΓE){
temp=JEKCG(Γlocal) if it is the first iteration
temp otherwise

is |Ti|ΓE ?

(|T |ΓE.id)((|Ti|ΓE) temp).id :

(|T |ΓE.id)(temp.GetType().GetField("id")
.GetValue(temp))

return |T |ΓE.id

where TE = JEKCG(Γlocal)

Line 33 in Figure 18 is an example of accessing the y

field of a dynamic union type. The ternary operator is the
same as the previous field access (sta.x), but reflection
is used in the last condition. We use reflection because
the dynamic din reference may point to an object that
does not implement the y field (it is a dynamic union
type). Finally, line 34 generates faster code generating a
direct cast because only one possible type in the union type
({x:int, y:int, z:int}) offers the z field.

Two special generation templates were specified to
translate assignments of field access expressions when the
object is a union type. Since they imply a simple
modification of the two previous translation rules, we do
not depict them.

4.8. Array Indexing

In the first scenario, the expression is an array type.

ΓE1 ; ΩE1 ` E1 : Array(T)

JE1[E2]KCG(Γlocal) ,
cast(T1, T [], E1,Γlocal) [cast(T2, int, E2,Γlocal)]
return |T |ΓE1[E2]

where T1 = JE1K(Γlocal), and T2 = JE2K(Γlocal)

If the first expression is not an array, reflection is used (the
GetValue method of the .Net’s Array class). Notice that it
cannot be a union of arrays because of the way we create
union types (Section 4.5). In that case, the type would be
an array of union types.

ΓE1 ; ΩE1 ` E1 : T T 6= Array

JE1[E2]KCG(Γlocal) ,
cast(T1,Array, E1,Γlocal)

.GetValue(cast(T2, int, E2,Γlocal))

return object
where T1 = JE1K(Γlocal), and T2 = JE2K(Γlocal)

We have overloaded the setValue method because the
.Net SetValue method does not return the assigned value.
It assigns values to an array element by means of reflection.

ΓE1 ; ΩE1 ` E1 : T T 6= Array

JE1[E2]=E3KCG(Γlocal) ,
setValue(cast(T1,Array, E1,Γlocal), JE3K(Γlocal),

cast(T2, int, E2,Γlocal))
return object

where T1 = JE1K(Γlocal), T2 = JE2K(Γlocal), and
T3 = JE3K(Γlocal)

5. RUNTIME PERFORMANCE

We have evaluated the runtime performance of the StaDyn
core presented in this paper, following the translation
scheme described in Section 4.1. An assessment of the whole
StaDyn implementation (that generates IL code instead of
C#) can be consulted in [23].

5.1. Methodology

In order to assess the StaDyn core translation to C#,
we have compared its runtime performance with probably
the two most widely used programming languages over the
.Net platform, compiled with their maximum optimization
options:

1. C# 4.0. The C# programming language version
4.0 combines static and dynamic typing [14]. When
dynamic code is used, the recently released Dynamic
Language Runtime (DLR) is used to optimize the
execution of dynamic code [40]. The DLR is now part
of the .Net framework 4.0.
The translation of programs from the StaDyn core to
C# 4.0 has been accomplished by coding functions
as static methods, translating every (dyn) var

reference into a dynamic one, and assigning expressions
(excluding function invocation and assignment) to
temporary object references.

2. Visual Basic 10. The VB 10 programming language
also supports both dynamic and static typing [41]. A
dynamic reference is declared with the Dim reserved
word, without setting a type. With this syntax, the
compiler does not infer any type information statically,
performing type checking at runtime. The main
difference between VB 10 and C# 4.0 is that the
former uses the Common Language Runtime (CLR),
whereas the latter employs the DLR. Translation from
the StaDyn core to VB has been done the same way as
to C# 4.0, but using the VB syntax.

3. StaDyn core. Programs coded in the StaDyn core
programming language presented in this paper (whose
abstract syntax is presented in Section 3.1). The
source code is checked by the type system described
in Section 3.2 and translated to C# 4.0 following the
translation templates defined in Section 4.

We have not included other dynamic programming
languages such as Python or Ruby to avoid the introduction
of a bias in the translation of source code (translation from

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 19

C# to VB is almost direct). Both C# and VB compile
code to the .Net framework, facilitating the comparison
of performance results. This way, the measurements
obtained show the performance improvement of gathering
type information of dynamic references at compile time.

We have divided the programs we have used to make the
comparison into three different groups:

1. A micro-benchmark to evaluate the influence of static
type information gathered by the compiler. For
this purpose, we have developed a synthetic micro-
benchmark that takes the following scenarios into
account:

• Explicit static type declaration. No var

references are used at all, explicitly stating the
type of every variable.

• Implicit dynamic type reference declaration,
when the compiler is able to infer types. Although
dyn var references are used, the StaDyn core
compiler infers their possible types statically.
Different types are inferred as a single union type.
The number of possible types in the union type
produces different runtime performance. In this
micro-benchmark we have considered this, writing
programs where 1, 5, 10 or 50 different possible
types are statically inferred.

• Implicit dynamic type reference declaration,
when the compiler does not infer any type.

For each scenario, we perform three different opera-
tions: accessing a field of an object, accessing an ele-
ment of an array, and performing an arithmetical op-
eration over two variables. These three operations are
performed in a loop of 5 million iterations.

2. Hybrid static and dynamic typing code. To
evaluate hybrid statically and dynamically typed
code, we have extended the StaDyn core program in
Figure 2, filling the list with 10,000 random two and
three dimensional points. The two positiveX and
closestToOrigin3D functions are called passing the
list reference as an argument.

3. Existing benchmarks for dynamically typed languages
to obtain an estimate of possible benefits over
dynamically typed languages. For this scenario we
have taken two well-known benchmarks for the Python
programming language: Pystone (a translation of the
Dhrystone benchmark) and Pybench (a collection of
tests that provides a standardized way to measure the
performance of Python implementations). From the
second one we have selected those tests that could
be translated into the StaDyn core (arithmetic, calls,
constructs, instances, lists, lookups, new instances and
numbers). Python code was first translated into the
StaDyn core; afterwards, the StaDyn core code was
translated into both C# 4.0 and VB following the
method described above.

Since the StaDyn core type system does not support
method overriding, all the tests in the selected benchmarks
make no use of dynamic binding in order to not bias the
runtime performance measurements.

The code has been instrumented with hooks to evaluate
runtime performance, recording the value of the processor’s
time stamp counter. We have measured the difference

0

5,000

10,000

15,000

20,000

25,000

30,000

Explicit 1 Type 5 Types 10 Types 50 Types No Type

Info

E
x

e
cu

ti
o

n
T

im
e

 (
m

s)

StaDyn core C# Visual Basic

MicroBenchmark Tests

FIGURE 21. Execution time of the micro-benchmark.

between the beginning and the end of each benchmark to
obtain the total execution time of each program.

All the programs have been executed over the .Net
framework 4.0 on a lightly loaded E6750 2.67 GHz
Core 2 Duo system with 2 GB of RAM running
Windows 7 Professional. Every test has been compiled
without debugging information and with full optimization.
To evaluate average percentages, ratios and orders of
magnitude, we have used the geometric mean.

5.2. Assessment

Table 1 shows the results expressed in milliseconds. The first
six rows show the results of the micro-benchmark; following
this, the hybrid static and dynamic typing Points example.
Finally, the dynamic typing benchmarks: Pybench (8 rows)
and Pystone (last row).

Beginning with the micro-benchmark, the test with ex-
plicit type declaration reveals that the three implementa-
tions offer exactly the same runtime performance (the gen-
erated IL code is almost the same). The performance as-
sessment when the exact single type of dyn var references
is inferred shows the repercussion of our approach. Runtime
performance of StaDyn core is the same as using explicitly
typed references (in fact, the generated code is precisely the
same). In this special scenario, StaDyn shows a huge perfor-
mance improvement. If the compiler infers the exact type
of dyn var references, the StaDyn core is more than 1,252
times faster than VB and, in the same situation, 185 times
faster than C# 4.0. difference is caused by the lack of static
type inferencing in both VB and C# 4.0. These two lan-
guages perform every type-checking operation over dynamic
references at runtime, using reflection. The use of reflective
operations in the .Net platform has an important perfor-
mance cost [38]. The difference between C# and VB shows
the performance benefit of using the DLR in this scenario.

Figure 21 shows the progression of execution time when
the compiler infers 1, 5, 10 or 50 possible types. The
last value is when no type information is gathered by

The Computer Journal, Vol. , No. ,

20 F. Ortin

Benchmark Test StaDyn core C# Visual Basic

Micro-benchmark

Explicit Typing 15.63 15.63 15.63
One possible type 15.63 2,906.25 28,953.13
Five possible types 406.25 2,937.50 29,640.63
Ten possible types 484.38 2,984.38 29,484.38
Fifty possible type 921.88 3,156.25 29,937.50
No type information 1,671.88 3,175.65 30,328.13

Hybrid Points 309.62 1,859.27 4,921.87

D
y
n
a
m

ic
a
ll
y

T
y
p

ed

Pybench

Arithmetic 31.25 2,109.38 671.88
Calls 203.13 2,765.63 2,796.88
Constructs 31.25 3,343.75 3,250.00
Instances 296.88 2,421.88 1,109.38
Lists 812.50 20,765.63 76,109.38
Lookups 93.75 2,453.13 52,062.50
NewInstances 31.25 1,796.88 9,421.88
Numbers 31.25 1,250.00 78.13

Pystone 281.25 2,937.50 9,218.75

TABLE 1. Execution time expressed in milliseconds.

FIGURE 20. Execution time ratios to C#.

the compiler. Although C# is 8.5 times faster than VB,
both runtime performance trends are nearly constant: the
standard deviation of VB is 1.7% and that of C# is 4.14%.
This small variation is caused by the lack of static type
information gathered for dynamic references. Therefore, the
generated code does not seem to depend on the number of
possible types.

The runtime performance of StaDyn core programs
evolves in a different way. Execution time shows a linear
increase in the number of types inferred by the compiler
(the performance benefit drops when the number of possible
types increases). As an example, the runtime performance

benefit drops to 32 and 3.42 times better than VB and C#
respectively, when the compiler infers 50 possible types for
dyn var references. This difference between our approach
and others is justified by the amount of type information
gathered by the compiler. StaDyn continues collecting type
information, even when references are set as dynamic, and
this information is used to optimize the generated code.
In contrast, both C# 4.0 and VB perform no static type
inference once a reference is declared as dynamic.

When the compiler obtains no static type information,
runtime performance is the worst in the three programming
languages. However, StaDyn core requires 5.52% and

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 21

52.65% of the execution time that VB and C# respectively
employ to run the same programs. In this scenario, the
DLR implies a considerable performance improvement (C#
vs. VB).

Figure 20 shows the ratios of execution time to C# for the
hybrid (Points) and dynamic typing benchmarks (Pybench
and Pystone). Running hybrid code, the performance
benefit is 500.5% and 1,489.65% compared to C# and
VB respectively. This benefit increases as the number
of dynamic references in the code grows: average benefit
running the dynamic typing code is 3,106.29% (C#)
and 3,381.3% (VB). Since StaDyn core optimizations are
obtained by means of collecting type information of dynamic
references, the compiler has more opportunities to optimize
the code when dyn var references are used. Therefore,
our language offers the flexibility of dynamic typing, and
a number of optimizations to come closer to the runtime
performance of static typing.

The lowest performance benefit obtained by StaDyn core
running dynamic code is with the numbers test of Pybench
(150% compared to VB). Since this test performs almost
all the operations over constant numbers (few variables are
used), our optimizations are hardly applied. Differences
between C# and VB may be due to the appropriateness
of using the DLR (C#) as opposed to the Reflection

namespace (VB) for dynamically typed code. One example
is the lookups test that accesses to dynamic fields of
an object, using another dynamic reference; under these
circumstances, the VB implementation is extraordinary
slower than C#.

6. RELATED WORK

Since both dynamic and static typing offer important
benefits, there have been approaches aimed at obtaining the
advantages of both, following the philosophy of static typing
where possible, dynamic typing when needed [19].

One of the first approaches was Soft Typing [42], that
applied static typing to a dynamically typed language
such as Scheme. Soft typing does not control which
parts in a program are statically checked, neither is static
type information used to optimize the generated code.
The approach proposed in [20] adds a Dynamic type to
the lambda calculus, including two conversion operations
(dynamic and typecase), generating a verbose code deeply
dependent on its dynamism.

The works of Quasi-Static Typing [43], Hybrid Typing
[44] and Gradual Typing [45] perform implicit conversions
between dynamic and static code, employing subtyping
relations in the case of quasi-static and hybrid typing, and
a consistency relation in gradual typing. Gradual typing
already identified unification-based constraint resolution as
a suitable approach to integrate both dynamic and static
typing [46]. However, with gradual typing a dynamic type
is always implicitly converted into static without any static
type-checking, because type inference is not performed over
dynamic references. The main difference between these
approaches and the work presented in this paper is that we
perform type-checking even when dynamic types are used,
detecting some type errors in dynamic code and, hence,
improving its robustness.

The work developed by Wrigstad et al. allows the
combination of dynamic and static typing in the Thorn

programming language [47]. Thorn offers like types, an
intermediate point between static and dynamic types [48].
Occurrences of like types variables are checked statically
within their scope but, as they may be bound to dynamic
values, their usage must be still checked at runtime. like

types increase the robustness of the Thorn programming
language, and programs developed using like types have
been assessed to be about 3x and 6x faster than using
dynamic types in the same programming language [48].

Although the Just programming language [49] does not
combine dynamic and static typing, it added implicit type
reconstruction to an explicitly typed language such as Java
to obtain statically checked duck typing. The combination of
syntax-directed and constraint-based type-checking allows
the programmer to write generic code without defining class
hierarchies [50]. This approach, however, does not consider
methods that generate constraints (polymorphic methods)
to invoke other polymorphic methods.

Theoretical works on combining static with dynamic
typing have been partially included in the implementation
of programming languages such as Boo, Visual Basic (VB)
.Net, Cobra, Dylan, Strongtalk, and the recently released
C# 4.0 [51]. Some programming languages have taken
the approach of adding a new dynamic type as proposed
in [20] (dynamic in C# and Cobra, and duck in Boo),
whereas others represent dynamic types by removing type
annotations in variable declarations (VB and Dylan) [41].
Strongtalk follows a completely different approach based
on the concept of pluggable type systems [52]. In these
languages, dynamic types are implicitly coerced to static
ones following the approach defined in [43] and [45], opposite
to the explicit use of a conversion instruction like the
typecase statement proposed by [20]. Since these implicit
coercions may fail at runtime, a dynamic type-check is
inserted in the generated code as described in [44].

There are also some works aimed at performing static
type inference of dynamically typed languages to discover
type errors before program execution. Diamondback Ruby
(DRuby) is a tool that blends Ruby’s dynamic type
system with a static typing discipline [32]. When possible,
DRuby infers static types to discover type errors in Ruby
programs. In many cases, the DRuby programmer must
annotate programs with types in order to obtain compile-
time type errors. Since DRuby trusts annotations to
be correct, improperly annotated code may cause run-
time type errors, and these errors may be misleading.
Anderson, Giannini and Drossopoulou formalized a subset
of JavaScript (JS0), defining a type inference algorithm that
is sound with respect to a type system [53]. Therefore,
programmers can benefit from the safety offered by the
type system, without the need to write explicitly types
in their programs. Different features of the JavaScript
programming language such as dynamic removal of members
or dynamic code evaluation are not supported. Neither of
these works (DRuby and JS0) use the statically inferred
type information to optimize the generated code.

7. CONCLUSIONS

The StaDyn programming language combines static and
dynamic typing in the very same programming language
offering early type error detection, improved runtime
performance, and direct interoperation between dynamically

The Computer Journal, Vol. , No. ,

22 F. Ortin

and statically typed code. The major contribution of
StaDyn is that static type inference and type checking is
performed by the compiler even over dynamic references,
offering a high level of flexibility, and a better robustness
and efficiency closer to static typing.

In order to formally describe the StaDyn programming
language, we have reduced it to its minimal core. The
key features of its type system are a new interpretation of
union and intersection types, the combination of syntax-
directed and constraint-based type-checking, type inference
of implicitly-typed dynamic and static references, and flow-
sensitive type-checking.

The type information gathered by the compiler is used
to generate optimized C# code. When running dynamic
languages benchmarks, the average runtime performance
improvement has been 23 and 27 orders of magnitude
compared to C# and VB respectively. When running hybrid
static and dynamic typing code, the runtime performance
benefit drops to 5 and 15 orders of magnitude. The lowest
benefit is obtained, 89.95% (C#) and 1,714% (VB), when
the compiler does not manage to infer any type information
of dynamic references. Finally, the code generation scheme
does not seem to involve any performance penalty, obtaining
the same results when types are explicitly stated.

The C# implementation of the StaDyn minimal core,
including a parser for its concrete syntax, its type system,
the translation to C# described in Section 4, and all the
examples and benchmarks used in this paper, are freely
available at http://www.reflection.uniovi.es/stadyn/

download/2011/computerjournal.
The current release of the whole StaDyn programming

language implementation and its source code can be down-
loaded from http://www.reflection.uniovi.es/stadyn.

ACKNOWLEDGEMENTS

This work has been funded by Microsoft Research, under
the project entitled Extending dynamic features of the
SSCLI, awarded in the Phoenix and SSCLI, Compilation
and Managed Execution Request for Proposals, 2006. It
has been also funded by the Department of Science
and Technology (Spain) under the National Program for
Research, Development and Innovation: project TIN2008-
00276, entitled Improving Performance and Robustness
of Dynamic Languages to develop Efficient, Scalable and
Reliable Software.

REFERENCES

[1] Thomas, D., Fowler, C., and Hunt, A. (2004)
Programming Ruby, 2nd edition. Addison-Wesley
Professional, Raleigh, North Carolina.

[2] Thomas, D., Hansson, D., Schwarz, A., Fuchs, T.,
Breed, L., and Clark, M. (2005) Agile Web Development
with Rails. A Pragmatic Guide. Pragmatic Bookshelf,
Raleigh, North Carolina.

[3] Hunt, A. and Thomas, D. (1999) The pragmatic
programmer: from journeyman to master. Addison-
Wesley Longman Publishing Co., Inc., Boston,
Massachusetts.

[4] ECMA-357 (2005) ECMAScript for XML (E4X) Speci-
fication, 2nd edition. European Computer Manufactur-
ers Association, Geneva, Switzerland.

[5] Crane, D., Pascarello, E., and James, D. (2005)
AJAX in Action. Manning Publications, Greenwich,
Connecticut.

[6] van Rossum, G., Fred, L., and Drake, J. (2003) The
Python Language Reference Manual. Network Theory,
United Kingdom.

[7] Latteier, A., Pelletier, M., McDonough, C., and
Sabaini, P. (2008). The Zope book. http://www.zope.

org/Documentation/Books/ZopeBook/.

[8] Django Software Foundation. Django, the web
framework for perfectionists with deadlines. http:

//openjdk.java.net/projects/mlvm.

[9] Ierusalimschy, R., de Figueiredo, L. H., and Filho,
W. C. (1996) Lua – an extensible extension language.
Software Practice & Experience, 26, 635–652.

[10] Ierusalimschy, R., de Figueiredo, L. H., and Celes,
W. (2007) The evolution of lua. Proceedings of
the conference on History of Programming Languages
(HOPL), San Diego, California, 9-10 June, pp. 1–26.
ACM.

[11] Hermann, J. The Pythius Web Site. http://pythius.

sourceforge.net.

[12] Böllert, K. (1999) On weaving aspects. Proceedings of
the Workshop on Object-Oriented Technology, Lisbon,
Portugal, 14-18 June, pp. 301–302. Springer-Verlag.

[13] Ortin, F. and Cueva, J. M. (2004) Dynamic adaptation
of application aspects. Journal of Systems and
Software, 71, 229–243.

[14] Torgersen, M. (2009) New features in C# 4.0. Microsoft
Corporation, Redmond, Washington.

[15] Hugunin, J. (2007) Just glue it! Ruby and the DLR in
Silverlight. The MIX Conference, Las Vegas, Nevada,
30 April - 7 May.

[16] Sun Microsystems. JSR 292, supporting dynamically
typed languages on the java platform. http://www.

jcp.org/en/jsr/detail?id=292.

[17] Sun Microsystems OpenJDK. The Da Vinci Machine, a
multi-language renaissance for the java virtual machine
architecture. http://openjdk.java.net/projects/

mlvm.

[18] Pierce, B. C. (2002) Types and Programming Lan-
guages. The MIT Press, Cambridge, Massachusetts.

[19] Meijer, E. and Drayton, P. (2004) Static typing where
possible dynamic typing when needed: The end of the
cold war between programming languages. Proceedings
of the OOPSLA Workshop on Revival of Dynamic
Languages, Vancouver, Canada, 24-28 October. ACM.

[20] Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G.
(1991) Dynamic typing in a statically typed language.
ACM Transactions on Programming Languages and
Systems, 13, 237–268.

[21] Abadi, M., Cardelli, L., Pierce, B. C., and Rémy,
D. (1995) Dynamic typing in polymorphic languages.
Journal of Functional Programming, 5, 111–130.

[22] Ortin, F. The StaDyn programming language. http:

//www.reflection.uniovi.es/stadyn.

[23] Ortin, F., Zapico, D., Perez-Schofield, J. B. G., and
Garcia, M. (2010) Including both static and dynamic
typing in the same programming language. IET
Software, 4, 268–282.

[24] Foster, J., Terauchi, T., and Aiken, A. (2002)
Flow-sensitive type qualifiers. Proceedings of the

The Computer Journal, Vol. , No. ,

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language 23

Programming Language Design and Implementation
(PLDI), Berlin, Germany, 17-19 June, pp. 1–12. ACM.

[25] Pierce, B. C. (1992) Programming with intersection
types and bounded polymorphism. Technical Report
CMU-CS-91-106. School of Computer Science, Pitts-
burgh, PA, USA.

[26] Corporation, M. The C# Programming Language.
http://download.microsoft.com/download/3/8/8/

388e7205-bc10-4226-b2a8-75351c669b09/csharp\

%20language\%20specification.doc.

[27] Barbanera, F., Dezani-Ciancaglini, M., and
De’Liguoro, U. (1995) Intersection and union types:
syntax and semantics. Information and Computation,
119, 202–230.

[28] Aiken, A. and Wimmers, E. L. (1993) Type inclusion
constraints and type inference. Proceedings of the
Conference on Functional Programming Languages and
Computer Architecture, Copenhagen, Denmark, 9-11
June, pp. 31–41. ACM Press.

[29] Igarashi, A. and Nagira, H. (2006) Union types
for object-oriented programming. Proceedings of
the Symposium on Applied Computing (SAC), Dijon,
France, 23-27 April SAC ’06, pp. 1435–1441. ACM.

[30] Lagorio, G. and Ancona, D. (2009) Coinductive
type systems for object-oriented languages. In
Drossopoulou, S. (ed.), Proceedings of the Euro-
pean Conference on Object-Oriented Programming
(ECOOP), Genova, Italy, 6-10 July, pp. 2–26. Springer-
Verlag.

[31] Igarashi, A., Pierce, B. C., and Wadler, P. (2001)
Featherweight Java: a minimal core calculus for Java
and GJ. Transactions on Programming Languages and
Systems, 23, 396–450.

[32] Furr, M., An, J.-h. D., Foster, J. S., and Hicks, M.
(2009) Static type inference for Ruby. Proceedings of
the ACM symposium on Applied Computing (SAC),
Honolulu, Hawaii, 9-12 March, pp. 1859–1866. ACM.

[33] Abadi, M. and Cardelli, L. (1996) A Theory of Objects.
Springer, Secaucus, NJ, USA.

[34] Damm, F. M. (1994) Subtyping with union types,
intersection types and recursive types. Proceedings
of the International Conference on Theoretical Aspects
of Computer Software (TACS), Sendai, Japan, 19-22
April, pp. 687–706. Springer-Verlag.

[35] Ortin, F. and Garcia, M. (2011) Union and intersection
types to support both dynamic and static typing.
Information Processing Letters, 111, 278–286.

[36] Ortin, F. and Garcia, M. (2010) Supporting dynamic
and static typing by means of union and intersection
types. Proceedings of the IEEE International
Conference on Progress in Informatics and Computing
(PIC), Shanghai, China, 10-12 December, pp. 993–999.
IEEE.

[37] Börger, E., Fruja, N. G., Gervasi, V., and Stärk,
R. F. (2005) A High-Level Modular Definition of the
Semantics of C#. Theoretical Computer Science, 336,
235–284.

[38] Ortin, F., Redondo, J. M., and Perez-Schofield, J.
B. G. (2009) Efficient virtual machine support of
runtime structural reflection. Science of Computer
Programming, 70, 836–860.

[39] Redondo, J. M. and Ortin, F. (2008) Optimizing re-
flective primitives of dynamic languages. International
Journal of Software Engineering and Knowledge Engi-
neering, 18, 759–783.

[40] Chiles, B. and Turner, A. Dynamic Language Run-
time. http://dlr.codeplex.com/Project/Download/

FileDownload.aspx?DownloadId=97300.

[41] Vick, P. (2007) The Microsoft Visual Basic Language
Specification. Microsoft Corporation, Redmond, Wash-
ington.

[42] Cartwright, R. and Fagan, M. (1991) Soft Typing. Pro-
ceedings of the Conference on Programming Language
Design and Implementation (PLDI), Toronto, Canada,
26-28 June, pp. 278–292. ACM.

[43] Thatte, S. (1990) Quasi-static typing. Proceedings
of the 17th symposium on Principles of programming
languages (POPL), San Francisco, California, United
States, January, pp. 367–381. ACM.

[44] Flanagan, C., Freund, S., and Tomb, A. (2006) Hybrid
types, invariants, and refinements for imperative
objects. Proceedings of the International Workshop
on Foundations and Developments of Object-Oriented
Languages (FOOL), San Antonio, Texas, 23 January.
ACM.

[45] Siek, J. G. and Taha, W. (2007) Gradual typing for
objects. Proceedings of the 21st European Conference
on Object-Oriented Programming (ECOOP), Berlin,
Germany, 30 July - 3 August, pp. 2–27. Springer-Verlag.

[46] Siek, J. G. and Vachharajani, M. (2008) Gradual typing
with unification-based inference. Proceedings of the
Dynamic Languages Symposium, Paphos, Cyprus, 25
July, pp. 7:1–7:12. ACM.

[47] Bloom, B., Field, J., Nystrom, N., Östlund, J.,
Richards, G., Strnisa, R., Vitek, J., and Wrigstad, T.
(2009) Thorn—robust, concurrent, extensible scripting
on the JVM. Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), Orlando, Florida, 25-29
October, pp. 117–136. ACM.

[48] Wrigstad, T., Nardelli, F. Z., Lebresne, S., Östlund,
J., and Vitek, J. (2010) Integrating typed and untyped
code in a scripting language. Proceedings of the
37th annual symposium on Principles of Programming
Languages (POPL), Madrid, Spain, 17-23 January
POPL ’10, pp. 377–388. ACM.

[49] Lagorio, G. and Zucca, E. (2007) Just: Safe unknown
types in java-like languages. Journal of Object
Technology, 6, 69–98.

[50] Lagorio, G. and Zucca, E. (2006) Introducing safe
unknown types in java-like languages. Proceedings of
the Symposium on Applied Computing (SAC), Dijon,
France, 23-27 April, pp. 1429–1434. ACM.

[51] Bierman, G., Meijer, E., and Torgersen, M. (2010)
Adding dynamic types to c#. Proceedings of the 24th
European Conference on Object-Oriented Programming,
Maribor, Slovenia, 21-25 June ECOOP’10, pp. 76–100.
Springer-Verlag.

[52] Bracha, G. (2004) Pluggable Type Systems. Proceed-
ings of the OOPSLA 2004 Workshop on Revival of Dy-
namic Languages, Vancouver, Canada, October. ACM.

[53] Anderson, C., Giannini, P., and Drossopoulou,
S. (2005) Towards type inference for javascript.

The Computer Journal, Vol. , No. ,

24 F. Ortin

Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Glasgow, UK, 9-11
June, pp. 428–452. Springer.

[54] Hunt, A. and Thomas, D. (2000) Dylan programming:
an object-oriented and dynamic language. Addison
Wesley Longman, Reading, Massachusetts.

The Computer Journal, Vol. , No. ,

