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This paper presents the active power dispatching of microsources, as an on-line

minimization problem, including electrical and heat generation costs. The use of a

new algorithm: on-line cost-function based control algorithm for microgrids

(OCCAM), makes it possible to obtain similar or even better solutions than those

obtained using other state of the art methods like MADS and SQP. Moreover, its

execution time is about one hundred times lower than the time needed by other

algorithms and it can run efficiently on-line. OCCAM is based on the same

principle as the famous William Occam’s razor: “the simplest explanation is most

likely the correct one”; its simplicity is the reason for its low execution time. It

uses costs functions of microsources and heat savings (obtained by recovering heat

from microsources in cogeneration installations) to determine the optimal solution.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712048]

I. INTRODUCTION

Microgrids integrating renewable and non-renewable generators are often thought of as a

future solution to the growing electrical and heat demand. Generators are located close to the

points of demand, reducing electrical losses and allowing heat to be recovered using cogenera-

tion (CHP) installations. Furthermore, microgrids make it possible to combine renewable and

non-renewable energy sources to guarantee low-cost electrical power and to minimize environ-

mental impact.

Nevertheless, massive non-controlled microgrids penetration in the distribution grid may

have negative effects on the global efficiency of the electrical system. The experience shows

that they may cause increased distribution losses, invalid protection and measurement systems,

and instability. Even worse, non-controlled microgrids may not attain low-cost energy and they

could have highly negative environmental impact due to gas emissions.

As the potential benefits outweigh the problems, various research lines have followed dif-

ferent approaches to minimize the negative effects of microgrids. The main studied factors have

been: electrical generation costs, on-line adaptation to electrical demand, gas emissions or the

economic and environmental implications of heat demand.

This work presents a heuristic algorithm to on-line dispatch of electrical active power in a

microgrid. The approach has two optimization criteria. The first one is to minimize the global

cost of active power and heat generation. Both include economic and environmental estimated

costs. The second one is to adjust electrical production to the demand while reducing the elec-

trical impact on the distribution system. This new algorithm is called “OCCAM: on-line cost-

function based control algorithm for Microgrids.” It is based on the same principle as William
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Occam’s razor “the simplest explanation is most likely the correct one.” In this research, test

results obtained using OCCAM are compared with results using state of the art methods to

solve the dispatching problem. It was obtained obtaining similar economical cost and improved

emissions cost results, with more stable microsource running conditions. It also needs less com-

putational resources and execution times that it can run on-line in an off-the-shelf controller.

II. RELATED WORK

Due to their technical and economic implications in the design and operation of microgrids,

most of the papers on this topic are related to the optimal sizing of microsources and the func-

tionality of electrical power dispatch.

Some of the latest researchers in the optimum size of microgrids have been developed by

Mohammadi et al.1 and Moghaddas-Tafreshi et al.2 The functionality of power dispatch is

included in microgrid management systems. References 3 and 4 review the state of the art of

the different systems. They are usually designed from one of three perspectives: seamless inte-

gration of microgrids into the electrical system, fully assuming the internal load; integration of

microsources in the electrical power market; and minimization of the economic and environ-

mental cost of non-renewable microsources.

The first perspective is the focus of the research from the United States Consortium for

Electric Reliability Technology Solutions (CERTS). The Consortium has designed a distributed

control system based on microsource local controllers that guarantees seamless integration with

the grid, but without optimization of the economic and environmental generation costs.5

The second perspective has been developed within the project MICROGRIDS financed by

the European Fifth Framework Programme.6 The design has a centralized control system in

which active power set points are generated by a complex software tool. This tool is based on

environmental and market predictions, with the objective of optimizing economic benefits.7

These set-points are dispatched 24 h in advance to non-renewable microsources. In this case

there is no on-line adaptation to possible variations in the consumption, therefore the impact on

the main grid is not guaranteed. Continuing with this line of investigation, special emphasis has

been put to include thermal generation and energy storage regulation.8

The third perspective is focused on minimizing fuel consumption and gas emissions as

well as adjusting on-line microgrid electrical and heat production to the demand. These princi-

ples were first proposed in Ref. 9 looking for unnoticed integration in the system. As the eco-

nomic implications of reactive power are minimal, efforts have been focused on the active

power dispatch problem. Recent research10–12 defines this problem as an on-line minimization

of a high non-linear function usually with non-linear constrains (technical limits of the micro-

sources and electrical generation equal to demand). The algorithms proposed to find the optimal

active power set-points are state-of-the-art mathematical methods to solve a non-linear function

optimization with restrictions (mesh adaptive direct search (MADS) and sequential quadratic

programming (SQP)). The MADS algorithm is an iterative method which uses a mesh method-

ology to find successive points that improve solutions in reference to the objective. The SQP

method finds an optimal solution with the iterative use of gradients of the objective function. In

the most recent research, the best results were obtained applying the MADS method. But the

computational resources needed to run on-line have not been evaluated.

This work presents an algorithm (OCCAM) designed to solve with minimum computational

resources, a microgrid active power dispatch problem. The procedure minimizes all energy

costs involved in electrical power and heat generation, achieving an on-line adaptation to the

electrical demand while assuring the heat request.

III. PROBLEM DEFINITION

Generically a microgrid arrangement (see Fig. 1) is composed of:

– N microsources, connected to the distribution system at only one point of common

coupling.13,14

– M heat generators.
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– An electrical demand.

– A heat demand.

– A heat recovery in CHP installations.

The problem to solve may be defined as the minimization of a global energy cost function

on line,

Cð�P; �TÞ ¼
Xi¼N

i¼1

Pi � fiðPiÞ þ
Xi¼M

i¼1

Ti � hjðTjÞ:

With the constraints of,

Xi¼N

i¼1

Pi ¼ ED

Xj¼M

j¼1

Tj � TD

MinPi � Pi � MaxPi

MinTj � Tj � MaxTj;

where
• Cð�P; �TÞ, ($/h) is the global energy cost in the microgrid.
• �P¼ (P1, … , Pi, …, PN), (kW) is the vector corresponding to the microsources active power gen-

eration levels.
• �T¼ (T1, …,Tj, …, TM), (kW) is the vector corresponding to heat generation levels.
• fi(Pi), ($/kWh) is the cost function associated to each microsource: the sum of fuel and emis-

sions cost function. fi(Pi)¼ gi(Pi) þ ei(Pi) (see Fig. 2)

FIG. 1. Microgrid arrangement.
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• gi(Pi), ($/kWh) is the fuel consumption cost function. It is obtained from microsource efficiency

at different power levels and the current fuel cost. The procedure uses a least squares technique

to obtain a continuous function.
• ei(Pi), ($/kWh) is the emissions cost function. It is obtained from the type of gas emissions, cost

associated to the removal of each contaminant ($/kg), emissions factor associated with the

active power production (kg/kW) and the fuel consumption data provided by the manufacturer.
• ED, (kW) is the instantaneous value of the electrical active power demand.
• hj(Tj), ($/kWh) is the cost function associated with each heat generator. Like the microsource

cost function, it is obtained taking into account both the fuel and the emissions cost function.

Usually, as the efficiency is quite uniform in the operating range, the cost per kWh could be

considered to be constant.
• TD, (kW) is the instantaneous value of the heat power demanded from the heat generators: the

total heat demand minus the heat recovered in CHP installations.
• Min Pi and Max Pi, (kW) are the technical limits of the active power generated by a

microsource.
• Min Tj and Max Tj, (kW) are the technical limits of heat power generated by a heat generator.

IV. OCCAM: ON-LINE COST-FUNCTION BASED CONTROL ALGORITHM

FOR MICROGRIDS

The new OCCAM algorithm is designed to be implemented in the Central Controller of a

control management system, which could also include local microsources and heat generators

controllers (Fig. 3).

In the minimization problem solution, the renewable microsources are allowed to generate

all the energy possible. It is supposed that renewable generation capacity is dimensioned to

cover only the base electrical load to avoid grid integration problems due to a high level of

exportation.

As renewable energies take precedence, OCCAM uses the remaining non-renewable and

storage devices cost functions as well as the economic savings obtained by heat recovering in

CHP installations to achieve the optimum solution. The algorithm is characterized by its sim-

plicity (“the simplest explanation is most likely the correct one”) which is the reason for its

minimum execution time.

FIG. 2. Microgrid cost function determination.
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Savings (Pi) ($/kWh), the function used for the evaluation of the heat recovery savings

from microsources in CHP installations, is calculated as the minimum cost of producing the

same quantity of heat in the generators of the microgrid.

OCCAM is divided into tasks to be executed sequentially (see Fig. 4):
• Task 0: Reset production levels. Set Pi¼ 0 for every microsource and Tj¼ 0 for every heat

generator.
• Task 1: Read active electrical power generation of renewable microsources (PRi), and electrical

and heat demand (ED, HD). Calculate the remaining electrical demand: RED¼ED-PRi.
• Task 2: If the total power generated by renewable microsources is higher than the electrical

demand (RED < 0), then charge the storage devices and continue in Task 7. Else the algorithm

continues.

Only for not assigned non-renewable microsources or energy storage devices:
• Task 3: Set preliminary power generation levels of each microsource (Ui) to its technical maxi-

mum generation level (MaxPi) or to the RED if this demand is smaller than the maximum

microsource capacity (RED < MaxPi).
• Task 4: Calculate generation cost, fi(Ui) or fi(Ui)-Savings (Ui) in case of cogeneration

installations.
• Task 5: Assign active power level to the microsource with lowest cost of generation. Calculate

the new value of remaining electrical demand (RED¼RED-Uassigned).
• Task 6: If any electrical demand is not yet assigned (RED > 0) and there are microsources with-

out any assignation, the algorithm continues its execution in Task 3. Otherwise skip forward to

Task 7.
• Task 7: If there is heat demand not covered in cogeneration installations, it is distributed into

different heat generators sequentially from the minimum to the maximum generation cost

(Tj(kW) set-points).
• Task 8: Send generation levels Pi and Tj, and return to Task 0.

For example, a microgrid includes five microsources (m1, m2, m3, m4, m5).

m1, m2, m3 are non-renewable microsources with costs functions associated: f1(P1), f2(P2),

f3(P3). m4 is a renewable microsource and m5 is a battery. The battery is assumed to have a

FIG. 3. Central control management system.
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zero cost function (this value is not mandatory; it can be set depending on the microgrid man-

agement policy or amortization, for example). All cost functions are represented in Fig. 5.

Microsource m3 is included in a CHP installation. The heat generated has a relationship

with the active power of 2.2�P3.

There are two gas boilers of 90 and 50 kW to cover the heat demand. Their cost

functions are (including economic and environmental cost) h1(T1)¼ 0.133$/kWh and

h2(T2)¼ 0.149 $/kWh, respectively.

The electrical power demand is 59 kW and the heat demand is 100 kW. The renewable

microsource is producing 15 kW and the battery has a potential of active power production of

10 kW.

The algorithm executes as follows:

1st execution
• Task 0:

(P1, P2, P3, P4, P5)¼ (0, 0, 0, 0, 0); (T1, T2)¼ (0, 0);

• Task 1:

P4¼ 15 kW; ED¼ 59 kW; HD¼ 100 kW; RED¼ 59�15¼ 44 kW
• Task 2:

RED>0! continue execution in Task 3.

Only for not assigned non-renewable microsources or energy storage devices:

FIG. 4. OCCAM algorithm flowchart.

033101-6 Alvarez, López, and Trashorras J. Renewable Sustainable Energy 4, 033101 (2012)

Downloaded 26 Oct 2012 to 156.35.192.4. Redistribution subject to AIP license or copyright; see http://jrse.aip.org/about/rights_and_permissions



• Task 3: Set preliminary power generation levels (Fig. 5)

m1: RED>10!U1¼ 10 kW

m2: RED>25!U2¼ 25 kW

m3: RED>30!U3¼ 30 kW

m5: RED>10!U5¼ 10 kW
• Task 4: Calculate generation cost of each microsource.

f1(U1)¼ 0.08 $/kWh

f2(U2)¼ 0.35 $/kWh

f3(U3)-savings (U3)¼ 0.4 – savings(U3)¼ 0.4 – 0.2926¼ 0.1074 ($/kWh)

The savings are calculated as follows:

Heat recovered in CHP installation¼ 2.2�U3¼ 2.2�30¼ 66 kW� 100 kW (heat demand)

Minimum cost to produce heat recovered using boilers,

h1ðT1Þ < h2ðT2Þ ! T1 ¼ 66 kW; T2 ¼ 0 kW

Heat production cost¼ h1(T1)�T1þ h2(T2)�T2¼ 0.133�66þ 0¼ 8.778 $/h

Heat production cost per electrical kWh: Savings (U3)¼ 8.778/U3¼ 0.2926 $/kWh

f5(U5)¼ 0
• Task 5: Assign active power level to the microsource with lowest cost of generation (Fig. 6).

P5¼U5¼ 10 kW

RED¼ 44�10¼ 34 kW
• Task 6: RED > 0 and m1, m2, and m3 without assignation! the algorithm continues its execu-

tion in Task 3.

2nd execution

(P1, P2, P3, P4, P5)¼ (0, 0, 0, 15, 10)
• Task 3:

m1: RED>10!U1¼ 10 kW

m2: RED>25!U2¼ 25 kW

m3: RED>30!U3¼ 30 kW
• Task 4:

f1(U1)¼ 0.08 $/kWh

f2(U2)¼ 0.35 $/kWh

f3(U3) – Savings (U3)¼ 0.4 – 0.2926¼ 0.1074 ($/kWh)

FIG. 5. Microsources cost functions and Task 3—Preliminary power generation levels.
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• Task 5 (Fig. 7):

P1¼U1¼ 10 kW

RED¼ 34-10¼ 24 kW
• Task 6: RED > 0 and m2 and m3 without assignation ! the algorithm continues its execution

in Task 3.

3rd execution

(P1, P2, P3, P4, P5)¼ (10, 0, 0, 15, 10)
• Task 3:

m2: RED<25!U1¼ 24 kW

m3: RED<30!U2¼ 24 kW (Fig. 8)
• Task 4:

f2(U2)¼ 0.45 $/kWh

f3(U3) – Savings (U3)¼ 0.5 – 0.2926¼ 0.2074 ($/kWh). In this case the heat recovered is

2.2�24¼ 52.8 kW

FIG. 6. Task 5-1st execution.

FIG. 7. Task 5-2nd execution.
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• Task 5 (Fig. 9):

P3¼U3¼ 24 kW

RED¼ 24�24¼ 0
• Task 6: RED¼ 0 kW)algorithm continues in Task 7.
• Task 7: Distribute heat generators set-points.

Remaining heat demand¼ 100 – 52.8¼ 47.2 kW > 0

As h1(T1) < h2(T2) the first heat generator assigned is T1 which is capable to cover up to

90 kW.

Then heat set-points are (T1, T2)¼ (47.2, 0).

• Task 8: Send generation levels Pi and Tj.

V. TEST CASE FOR PERFORMANCE COMPARISON

The test case used to compare the performance of different algorithms is based on a micro-

grid arrangement (Fig. 10) used in the EU Project MICROGRIDS.6 In the case selected, five

FIG. 8. Task 3-3rd execution.

FIG. 9. Task 5-3rd execution.
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microsources have been considered: a 50 kW proton exchange membrane fuel cell (PEM), a

30 kW gas microturbine in a CHP installation, a 15 kW diesel generator, a photovoltaic array of

20 kW (maximum power at standard test condition, STC), and a battery (1153 Ah, 6VDC). The

auxiliary heat generator is a natural gas boiler with 200 kW of thermal power. These three non-

renewable microsources have been selected because of the heterogeneity of their technology.

Each of these sources is sufficiently documented to determine their efficiency at each active

power level of production and their dynamic behaviour.

VI. DYNAMIC MODELS OF NON-RENEWABLE MICROSOURCES

The non-renewable microsources are modelled using a first order approach15,16 with two

working modes: cold start and running mode. The model includes mechanical, electrical, and

control elements.

The time constants of the model for the different microsources are shown in Table I. They

have been obtained from:

– Fuel cell

The cold start and the running time constants of the fuel cell were obtained from research

papers.17,18 The temperature limitation during cold start was also implemented using data from

Ref. 16.

FIG. 10. Simulation platform.

TABLE I. Time constants (s).

Microsource Cold start mode Running mode

Microturbine 200 7

Fuel cell 70 7

Diesel engine 10 3
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– Microturbine

The time constants of the 30 kW microturbine, for cold start and running mode were obtained

from the tests carried out in Ref. 19.

– Diesel engine

For the diesel engine model, the running mode time constant was obtained from Ref. 20 and

the cold start from.21 This last value have been adjusted to account for emission, operation

and the maintenance problems that a cold start may generate if it is not controlled by a

smooth demand function.

FIG. 11. Fuel cell cost functions.

FIG. 12. Microturbine cost functions.
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VII. COST FUNCTIONS OF NON-RENEWABLE MICROSOURCES

a) Fuel consumption cost function

Fuel consumption cost functions were obtained from current fuel prices and efficiency data

available from the manufacturer technical specifications. Discrete data were converted to a

continuous function using a least squares fitting.

– Fuel cell

For the fuel cell (Fig. 11), data were taken from the PEM 50 kW model of the Virginia Tech

Laboratory.17

– Microturbine

Data from 30 kW microturbine Capstone C30 (Fig. 12) were taken for ISO conditions (15 �C,

60%, relative humidity and 101.325 kPa).22

– Diesel engine

In the case of the diesel engine (Fig. 13), a standard 15 kW electrical power model was

selected.23

b) Emissions cost functions

The emissions cost functions were obtained for each case using the nominal emissions

factor24 (kg pollutant/kWh) weighted with the fuel consumption curve, and the cost associated to

the removal of each contaminant25 ($/kg pollutant).

VIII. TEST DEFINITION

Once the simulation case was established, different tests were performed using the follow-

ing parameters:

– Algorithms: MADS and SQP, and OCCAM.

– Platform: Simulink (MATLAB); CPU Intel Core Duo 1.66 GHz, and 2 GB of RAM.

– Electrical demand: One-day demand of 40, 80, 160, and 200 houses.26

– Heat demand: One-day demand of 40, 80, 160, and 200 houses.27

– Power generated by the photovoltaic array28:

FIG. 13. Diesel engine cost functions.
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FIG. 14. One day electrical and heat demand for 200 houses; photovoltaic production.

TABLE II. Correlation coefficients.

40 houses 80 houses 160 houses 200 houses

MADS 0.098 0.520 0.880 0.901

SQP 0.088 0.540 0.871 0.901

OCCAM 0.127 0.597 0.885 0.974

TABLE III. Global costs ($).

40 houses 80 houses 160 houses 200 houses

MADS 29.55 52.50 98.50 115.70

SQP 29.02 52.05 113.30 149.40

OCCAM 27.75 51.65 99.15 116.3

TABLE IV. Emission costs ($).

40 houses 80 houses 160 houses 200 houses

MADS 5.62 9.87 18.21 19.69

SQP 5.61 9.78 24.85 34.13

OCCAM 5.57 9.73 18.17 19.66
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PPV ¼ PSTC �
GING

GSTC

� ð1� k � ðTC � TRÞÞ;

where PPV is the output power, PSTC maximum power at standard test condition, GING incident

irradiance, GSTC standard test irradiance, k coefficient of thermal power reduction, TC cell tem-

perature, and TR reference temperature. Climatological data were obtained from Ref. 29.

Fig. 14 shows the electrical and heat demand together with the photovoltaic production

along a whole day for the 200 houses test.

IX. RESULTS AND DISCUSSION

From each different test the following data were obtained:

– Generation level of each microsource and heat generator along time.

– Costs per day.

– Correlation coefficient to define electrical demand adjustment.

– Processing time of the three different algorithms.

Global results are shown in Tables II–V. The best correlation coefficients were obtained

using OCCAM, which means a better adjustment of the electrical generation to the demand.

The high values obtained—with the three methods—imply that a transparent integration in the

electrical system may be achieved. In terms of global cost, the results obtained with the three

algorithms are similar, but OCCAM obtains the minimum emissions costs.

TABLE V. Average execution time (ms).

40 houses 80 houses 160 houses 200 houses

MADS 39.2 33.9 43.8 47.3

SQP 23.9 12.8 89 26.3

OCCAM 0.0404 0.0395 0.0496 0.0498

FIG. 15. MADS execution time and generation active power values (200 houses).
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About the average execution times, the times obtained using the OCCAM algorithm are

about three orders of magnitude lower than those obtained with the other algorithms.

Figures 15 and 16 show the single cycle execution time for the MADS and SQP algo-

rithms, together with the power levels of non-renewable microsources along the day. The

MADS algorithm has a tendency to a high oscillation of the cycle time as well as discrete

increments when the number of microsources augments. This can be seen in Figure 15 when

the use of the diesel engine is required (80.000 to 85.000 s). The SQP has a lower range of

oscillation but there are some isolated peaks, usually when the number of microsources

changes. Although it has not been included in the figures, the execution time using OCCAM

also has high relative oscillations but it always remains below 0.5 ms.

The microsources set-points obtained using MADS and SQP have larger variations than

those obtained using OCCAM. They not only have more microsources starts and stops but also

each individual power level has significant fluctuations. This is the reason to its lower

FIG. 16. SQP execution time and generation active power values (200 houses).

FIG. 17. Detail of the microturbine electrical power generation using the three algorithms (40 houses).
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correlation coefficients. For example, Figure 17 shows a detail of the electrical power produced

by the microturbine in the test with 40 houses.

X. CONCLUSIONS

This research describes and presents the results of a new algorithm (OCCAM) for active

power and heat dispatch in connected-to-the-grid microgrids. The algorithm is based on the

heuristic minimization of microsources costs functions. The algorithm has been compared with

state of the art of non-linear optimization methods (MADS, SQP) using a test case based on the

MICROGIDS project6 and different electrical and heat daily demands.

The performance obtained using OCCAM is similar or even better than that obtained using

MADS and SQP in terms of economic costs and transparent integration in the distribution

system.

However, the proposed method has shown two significant improvements. First, the

OCCAM algorithm achieves minimum emission costs with better microsource stability. Second,

the execution time is about three orders of magnitude lower, and it is easy to implement in an

off-the-shelf controller. That makes the algorithm suitable to on-line running in a centralized

microgrid management system.
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