Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at \(z \sim 1 \)\(^*\)

Planck Collaboration: N. Aghanim\(^{50}\), M. Arnaud\(^{54}\), M. Ashdown\(^{62,4}\), F. Atrio-Barandela\(^{44}\), J. Aumont\(^{50}\), C. Baccigalupi\(^{73}\), A. Balbi\(^{31}\), A. J. Banday\(^{82,7,68}\), R. Barreiro\(^{58}\), J. G. Bartlett\(^{3,69}\), E. Battaner\(^{84}\), K. Benabed\(^{51,80}\), A. Benoist\(^{49}\), J.-P. Bernard\(^{82,7}\), M. Bersanelli\(^{28,44}\), R. Bhatia\(^{3}\), H. Böhringer\(^{69}\), A. Bonaldi\(^{61}\), J. R. Bond\(^{4}\), S. Borgani\(^{39,42}\), J. Borrill\(^{67,76}\), F. R. Bouchet\(^{50}\), M. L. Brown\(^{62,4}\), C. Burigana\(^{13}\), P. Cabella\(^{31}\), C. M. Cantalupo\(^{67}\), B. Cappellini\(^{44}\), P. Carvalho\(^{4}\), A. Catalano\(^{3,63}\), L. Cayón\(^{22}\), L.-Y. Chiang\(^{54}\), C. Chiang\(^{21}\), G. Chon\(^{69,4}\), P. R. Christensen\(^{70,32}\), E. Churazov\(^{68,75}\), D. L. Clements\(^{47}\), S. Colafrancesco\(^{41}\), S. Colombi\(^{51,80}\), B. P. Crill\(^{10,71}\), F. Cuttita\(^{43}\), A. Da Silva\(^{10,1}\), H. Dahle\(^{56,9}\), L. Danese\(^{73}\), O. D.’Arcangelo\(^{59}\), R. J. Davis\(^{61}\), P. de Bernardis\(^{7}\), G. de Gasperis\(^{11}\), G. de Zotti\(^{40,73}\), J. Delabrouille\(^{3}\), J.-M. Delouis\(^{35}\), J. Démoclès\(^{84}\), F.-X. Désert\(^{45}\), C. Dickinson\(^{41}\), J. M. Diego\(^{58}\), H. Dole\(^{50}\), S. Donzelli\(^{44,56}\), O. Doré\(^{60,83}\), M. Douspis\(^{50}\), X. Dupac\(^{36}\), G. Efstathiou\(^{55}\), T. A. Enßlin\(^{55}\), H. K. Eriksen\(^{56}\), F. Finelli\(^{3}\), I. Flores-Cacho\(^{57,31}\), O. Forni\(^{11,4}\), P. Fosalba\(^{52}\), M. Frailis\(^{42}\), E. Franceschi\(^{43}\), S. Fromenteau\(^{5,50}\), S. Galeotta\(^{42}\), K. Ganga\(^{3}\), R. T. Génova-Santos\(^{57,33}\), M. Giard\(^{62,7}\), J. González-Nuevo\(^{73}\), J. González-Riestra\(^{35}\), K. M. Górska\(^{60,85}\), A. Gregorio\(^{4}\), A. Gruppuso\(^{15}\), F. K. Hansen\(^{46}\), D. Harrison\(^{55,62}\), P. Heimävä\(^{73}\), C. Hénon\(^{35}\), J. A. Rubiño-Martín\(^{57}\), P. R. Christensen\(^{47}\), M. J. Davis\(^{61}\), E. Battaner\(^{49}\), K. Benabed\(^{51}\), P. Platania\(^{59}\), E. Pointecouteau\(^{82}\), B. P. Crill\(^{40}\), F. Noviello\(^{50}\), D. Novikov\(^{47}\), D. Novikov\(^{70}\), I. J. O’Dwyer\(^{60}\), M. López-Caniego\(^{58}\), G. Luzzi\(^{66}\), J. F. Macías-Pérez\(^{65}\), D. Maino\(^{28}\), B. M. Schaefer\(^{81}\), D. Scott\(^{11}\), M. S. Stahler\(^{42}\), D. Scott\(^{10}\), G. F. Smoot\(^{3,67}\), J.-L. Starck\(^{64}\), D. Sutton\(^{55,62}\), J. F. Sygnet\(^{51,80}\), J. A. Tauber\(^{37}\), L. Terenzi\(^{42}\), L. Toffolatti\(^{15}\), M. Tomas\(^{58,14}\), M. Tristram\(^{66}\), M. Türler\(^{46}\), L. Valenziano\(^{43}\), P. Vielva\(^{58}\), F. Villa\(^{43}\), N. Vittorio\(^{31}\), L. A. Wade\(^{60}\), B. D. Wandelt\(^{51,80,25}\), J. Weller\(^{83}\), S. D. M. White\(^{68}\), M. White\(^{23}\), D. Yvon\(^{12}\), A. Zacchei\(^{12}\), and A. Zonca\(^{24}\)

(Affiliations can be found after the references)

Received 7 June 2011 / Accepted 11 July 2011

ABSTRACT

We present first results on PLCK G266.6–27.3, a galaxy cluster candidate detected at a signal-to-noise ratio of 5 in the Planck All Sky survey. An XMM-Newton validation observation has allowed us to confirm that the candidate is a bona fide galaxy cluster. With these X-ray data we measure an accurate redshift, \(z = 0.94 \pm 0.02 \), and estimate the cluster mass to be \(M_{500} = (7.8 \pm 0.8) \times 10^{14} M_\odot \). PLCK G266.6–27.3 is an exceptional system: its luminosity of \(L_{500} = 0.5\text{ keV} \) is \((1.4 \pm 0.05) \times 10^{45} \text{ erg s}^{-1} \), which is equal to that of the two most luminous known clusters in the \(z > 0.5 \) universe, and it is one of the most massive clusters at \(z \sim 1 \). Moreover, unlike the majority of high-redshift clusters, PLCK G266.6–27.3 appears to be highly relaxed. This observation confirms Planck’s capability of detecting high-redshift, high-mass clusters, and opens the way to the systematic study of population evolution in the exponential tail of the mass function.

Key words. cosmology: observations – galaxies: clusters: general – galaxies: clusters: intracluster medium – X-rays: galaxies: clusters – cosmic background radiation

1. Introduction

Very massive clusters above redshift \(z \sim 1 \), when the Universe was at half the present age, are predicted to be very rare. They potentially provide a sensitive probe to constrain deviations from the standard ΛCDM paradigm (e.g. Mortonson et al. 2011); e.g., owing to non-Gaussian perturbations, non-standard quintessence models or modified gravity models (see Allen et al. 2011, for a review). They are also ideal targets for studying key aspects of the gravitational physics that drives cluster formation.
including measurement of the evolution of the mass concentra-
tion. For these reasons, the scientific community has, over the
past two decades, put strong effort into the discovery and
characterisation of these objects.

Until recently it was possible to identify clusters of galax-
ies only via optical/infrared or X-ray surveys. Indeed, the most
distant clusters presently known have all been detected with
these techniques, e.g., the IR-selected cluster CLJ1449+0856
at \(z = 2.07\) (Gobat et al. 2011) and the X-ray selected system
XMUM J105324.7+572348 at \(z = 1.75\) (Henry et al. 2010). For
both of these objects, extended X-ray emission has been de-
tected with XMM-Newton, confirming their status as fully estab-
lished galaxy clusters; however, their total masses are more typ-
ical of systems in the poor cluster or group regime (\(\lesssim 10^{14} M_\odot\)).

Uncertainties due to the cluster redshift; \(M_\odot\) is the total mass and radius corresponding to a total density con-
stant \(\delta\), as compared to \(\rho_c(z)\), the critical density of the Universe
at its present-day value. The quantities \(M_\odot\) and \(R_\odot\) are the total mass and radius corresponding to a total density con-
stant \(\delta\), as compared to \(\rho_c(z)\), the critical density of the Universe
at the cluster redshift; \(M_\odot\) is the angular-diameter distance to the cluster.

2. Planck detection

The blind search for clusters in Planck data relies on a multi-
matched filter (MMF) approach (Melin et al. 2006). Candidates
then undergo a validation process, including internal quality
checks and cross-correlation with ancillary data and catalogues,
as described in Planck Collaboration (2011d). This process
produces a list of new Planck SZ cluster candidates above a
given \(S/N\) threshold that require follow-up for confirmation. The
XMM-Newton follow-up for validation, undertaken in Director’s
Discretionary Time via an agreement between the XMM-Newton
and Planck Project Scientists, plays a central role in this con-
firmation procedure. It consists of snapshot exposures (~10 ks)
sufficient for unambiguous discrimination between clusters and
false candidates (Planck Collaboration 2011e). The results of the
first two runs (completed in September 2010) are reported by

The XMM-Newton validation programme is continuing to
explore lower \(S/N\) and detection quality criteria. PLCK G266.6–27.3,
detected at \(S/N = 5.03\), was observed in the framework of the third run of the XMM-Newton valida-
tion programme, for which the analysis is on-going. This run
comprises a total of 11 candidates detected at \(4.5 < S/N < 5.3\)
from the same Planck HFI maps used for the construc-
tion the ESZ sample. The 11 candidates were sent for schedul-
ing in November 2010 and the observations were performed
between 22 December 2010 and 16 May 2011. Interestingly,
PLCK G266.6–27.3 has been independently detected in the
SPT survey. Its Planck position \((61°\!6′\!66′′, −57°\!47′\!29″)\) is con-
sistent with that of SPT-CL J0615-5746 (Williamson et al. 2011,
published on arXiv.org in January 2011, with a photometric redshift of \(\zeta_{\text{phot}} = 1 \pm 0.1\)).

3. XMM-Newton validation

3.1. Observation and data reduction

PLCK G266.6–27.3 was observed with the XMM-Newton EPIC
instrument (Turner et al. 2001; Strüder et al. 2001), using the
thin filters and the extended full frame mode for the “pn-CCD”
camera. The data analysis and validation procedure is described
in Planck Collaboration (2011e). Calibrated event lists were pro-
duced with v11.0 of the XMM-Newton Science Analysis System.
Data that are affected by periods of high background due to soft
proton flares were omitted from the analysis, and the remaining
data were PATTERN-selected and corrected for vignetting, as
described in Pratt et al. (2007). Bright point sources were excised

Footnotes:
1 In practice, the mass threshold detectable by Planck increases with
redshift. The total SZ signal is not resolved by Planck at high \(z\) and it
decreases with \(z\) due to the decreasing angular size of the object.
2 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
etific consortia funded by ESA member states (in particular the lead
countries: France and Italy) with contributions from NASA (USA),
and telescope reflectors provided in a collaboration between ESA and a
scientific consortium led and funded by Denmark.
from the data. Background treatment is described in Pratt et al. (2010). In the spectroscopic analysis, the cluster component was modelled with an absorbed thermal emission model (mekal) with a hydrogen column density fixed at the 21-cm value of Dickey & Lockman (1990).

The observation, OBSID = 0658200101, was affected by soft proton flares. The net exposure time after flare cleaning is only 2.4 ks for the pn-CCD camera, with a particle background 30% higher than nominal. The MOS camera data are less affected with a clean time of ~12 ks and a background excess about two times lower. We undertook a conservative approach to analysing spectroscopic data, since they are the most sensitive to the background estimate. We first fitted the data from the three cameras simultaneously, then fitted only the MOS cameras. The uncertainties in the physical quantities below reflect the difference in best-fitting values between the two analyses and their errors.

3.2. Confirmation and z estimate

In Fig. 1 we show the vignetting-corrected count rate image of the cluster in the [0.3−2.0] keV band. An extended X-ray source is clearly coincident with PLCK G266.6−27.3. Its total EPIC count rate in the [0.3−2.0] keV band is (0.52 ± 0.02) count/s within 2.3′, the maximum radius of detection. The offset between the X-ray cluster centre, defined as the emission peak at $6\,^\circ 15\,^\prime 51\,^\prime\prime 7$, $57\,^\circ 46\,^\prime 52\,^\prime\prime 8$, and the Planck blind position is 2.07′, consistent with the position reconstruction uncertainty, driven by the Planck spatial resolution and the source S/N (Planck Collaboration 2011d). The extended nature of the source is confirmed by comparing the surface brightness profile with the XMM-Newton point spread function (PSF) (Fig. 1, right panel). A typical (PSF-convolved) cluster surface brightness model consisting of a β-model with a central cusp (Eq. 2 in Pratt & Arnaud 2002) provides a good fit to the data and further supports the extended nature of the source (Fig. 1).

We extracted a spectrum within a circular region corresponding to the maximum significance of the X-ray detection ($\theta \lesssim 1.5\,^\prime$). The iron K line complex is clearly detected (Fig. 2). Its significance is 3.6σ, estimated from a fit of the spectrum in the [2−6] keV band with a continuum plus a Gaussian line model. Since the centroid of the line complex depends on the temperature, the redshift is determined from a thermal model fit to the full spectrum, as described in detail in Planck Collaboration (2011e). This yields a precise redshift estimate of $z = 0.94 \pm 0.02$.

4. Physical cluster properties

4.1. An exceptionally luminous and massive cluster

We derived the deprojected, PSF-corrected gas density profile from the surface brightness profile, using the non-parametric method described in Croston et al. (2006). Global
Table 1. Physical properties of PLCK G266.6–27.3 derived from XMMF-Newton data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>Abundance</td>
<td>0.44 ± 0.17 solar</td>
</tr>
<tr>
<td>(R_{500})</td>
<td>0.98 ± 0.03 Mpc</td>
</tr>
<tr>
<td>(M_{500})</td>
<td>7.8 (10^{14}) (\odot)</td>
</tr>
<tr>
<td>(Y_X)</td>
<td>(1.10^{0.20}{-0.17} \times 10^{13} , M\odot , keV)</td>
</tr>
<tr>
<td>(T_X)</td>
<td>(10.5 \pm 1.4 , keV)</td>
</tr>
<tr>
<td>(T(<R_{500}))</td>
<td>(11.4 \pm 1.4 , keV)</td>
</tr>
<tr>
<td>(L_{500}(0.5–2.0) , keV)</td>
<td>(14.2 \pm 6 , 10^{44} , erg , s^{-1})</td>
</tr>
<tr>
<td>(L_{500}(0.1–2.4) , keV)</td>
<td>(22.7 \pm 8 , 10^{44} , erg , s^{-1})</td>
</tr>
</tbody>
</table>

Notes. The \(M_{500} - Y_X\) relation with self-similar evolution is used to estimate \(R_{500}\) (see Sect. 4).

Cluster parameters were then estimated self-consistently within \(R_{500}\) via iteration about the \(M_{500} - Y_X\) relation of Arnaud et al. (2010), assuming standard evolution, \(E(z)^{2/3}M_{500} = 10^{14.567z+0.010} \left[2.5 \times 10^{14} \, M_\odot \, keV\right]^{0.561z+0.18} \). The quantity \(Y_X\), introduced by Kravtsov et al. (2006), is defined as the product of \(M_{500}\), the gas mass within \(R_{500}\), and \(T_X\). \(T_X\) is the spectroscopic temperature measured in the [0.15–0.75] \(R_{500}\) aperture. In addition, \(L_{500}\), the X-ray luminosity inside \(R_{500}\), was calculated as described in Pratt et al. (2009). All resulting X-ray properties, including iron abundance, are summarised in Table 1.

PLCK G266.6–27.3 is an exceptionally luminous system. Its [0.1–2.4] keV band luminosity of \((22.7 \pm 0.8) \times 10^{44} \, erg \, s^{-1}\) is equal to that of the fifth most luminous object in the MCXC compilation of Piffaretti et al. (2011). MACS J0717.5+3745 at \(z = 0.55\), discovered in the RASS by Edge et al. (2003). Moreover, its [0.5–2.0] keV band luminosity is consistent with that of SPT-CL J1206–5844, the most luminous cluster known beyond \(z = 1\) (Foley et al. 2011). Collectively, these three clusters are the most luminous systems at \(z > 0.5\). They are only 40% fainter than RXJ 1347.5–1145, the most X-ray luminous cluster known in the Universe (Piffaretti et al. 2007).

Consistent with expectations for high-redshift Planck-detected clusters, we find that this cluster is extremely hot, \(T_X \sim 11\) keV, and massive, with a mass of \(M_{500} = 7.8 \times 10^{14} \, M_\odot\). Our mass estimate is consistent with the less precise value, \(M_{500} = 8 \pm 2\) (statistical) \(+1.9\) (systematic) \(\times 10^{14} \, M_\odot\), which is derived by Williamsson et al. (2011) using the relation between SPT S/N and mass. Comparison of the masses of high-redshift systems is not trivial, because the estimation strongly depends on method, e.g., which mass proxy is used and at what reference radius the mass is measured. On the basis of the published mass estimates, PLCK G266.6–27.3 would appear to be the most massive cluster at \(z \sim 1\). Using the same factor to convert \(M_{200}\) to \(M_{500}\) as Foley et al. (2011), we obtain \(M_{200} = 15.5 \times 10^{14} \, M_\odot\), to be compared to \(M_{200} = (12.7 \pm 2.1) \times 10^{14} \, M_\odot\) for SPT-CL J2106-5844. However, the last value was derived by combining X-ray and SZ data. A more direct comparison of \(M_{500}\) values estimated from the \(M_{500} - Y_X\) relation indicates that they are identical within their uncertainties: \(M_{500} = (7.8 \pm 0.8) \times 10^{14} \, M_\odot\) for PLCK G266.6–27.3 and \(M_{500} = (9.3 \pm 2.0) \times 10^{14} \, M_\odot\) for SPT-CL J2106–5844.

3 The error includes an extra \(-15\%\) error accounting for uncertainties in the scaling relations.

4.2. \(Y_{500}\) Compton parameter versus \(Y_X\)

The MMF blind detection was performed using the universal pressure profile of Arnaud et al. (2010) as a spatial template, leaving the position, characteristic size, \(\theta_{500}\), and SZ flux, \(Y_{500}\), as free parameters. The resulting flux, \(Y_{500} = (5.6 \pm 3.0) \times 10^{-4} \, arcmin^{-2}\), is consistent with the value, \(Y_{500} = 6.4 \times 10^{-4} \, arcmin^{-2}\), expected from the scaling relation derived from the universal pressure profile (Arnaud et al. 2010, Eq. (19)). The cluster size, comparable to Planck’s spatial resolution, is poorly constrained, \(\theta_{500} = 3.3 \pm 2.8\). As discussed in Planck Collaboration (2011d), the uncertainty on the blind \(Y_{500}\) value is then large because of the flux-size degeneracy, where an overestimate of the cluster size induces an overestimate of the SZ signal. The SZ photometry can be improved by using the more precise XMM-Newton position and size in the flux extraction. The \(Y_{500}\) value obtained using these X-ray priors, \(Y_{500} = (4.1 \pm 0.9) \times 10^{-4} \, arcmin^{-2}\), is lower than the value expected from the X-ray data at the 1.7\(\sigma\) significance level.

To check the robustness of the \(Y_{500}\) estimate, we compared the MMF value with the one derived from the PowellSnakes (PWS; Carvalho et al. 2009, and in prep.) algorithm and the modified internal linear combination algorithm (MILCA; Hurter et al. 2010). The values are given in Table 2. PWS is a blind detection algorithm that assumes the same profile shape as MMF, but is based on a Bayesian statistical approach, as fully described in Carvalho et al. (2009). MMF and PWS give consistent results, the difference between MMF and PWS \(Y_{500}\) values being about 1.3 times the respective \(1\sigma\) uncertainties. MILCA is a component separation method that allows reconstruction of the SZ map around the cluster from an optimised linear combination of Planck HFI maps. In contrast to the MMF and PWS methods, the SZ flux derived from MILCA is obtained from aperture photometry, i.e., with no assumptions on SZ profile shape or size. Assuming a typical conversion factor of 2/3 based on the universal profile to convert the total \(Y_X\) MILCA measurement to \(Y_{500}\), the MMF and MILCA estimates are in excellent agreement.

Several factors may affect the X-ray and SZ flux measurements and bring them out of accord. We have checked for possible AGN contamination that could lower the \(Y_{500}\) value using the NVSS (at 1.4 GHz, Condon et al. 1998) and SUMSS (at 0.84 GHz, Bock et al. 1999) catalogues, but no bright radio sources are found in the cluster vicinity. The closest radio source with significant flux density is at 12\(\alpha\) away. The source has a 1 GHz flux density of 0.46 Jy. We also find no evidence of radio contamination in the low-frequency Planck bands. On the other hand, the \(Y_X\) measurement may also be increased by AGN contamination, from cluster members or foreground/background.
galaxies. Point source contamination is difficult to estimate owing to the XMM-Newton PSF. So, we estimate a maximum contribution to the X-ray luminosity from a central active galaxy of ≤20%, assuming a point source model normalised to the central value of the X-ray surface brightness. The contribution to the gas mass, hence to Y_X, would be less, provided that the source is not hard enough to significantly affect T_X. Nevertheless, only high-resolution X-ray imaging (e.g., from Chandra) can definitively establish whether X-ray AGNs at the cluster location affect our luminosity or mass measurement. A departure from the universal pressure profile would change the Y_{500}/Y_X ratio. The density profile shown below does not show any indication of this effect; however, deep spatially resolved XMM-Newton and Chandra spectroscopic observations are needed to derive the radial pressure gradient from the core to R_{500}. A final interesting possibility is that gas clumping could affect the Y_X measurements. A combination of X-ray and higher resolution SZ observations is required to assess this point.

4.3. Dynamical state and self-similarity of shape up to high z

The available information indicates that PLCK G266.6−27.3 may be particularly dynamically relaxed. The cluster image (Fig. 1, middle panel) does not show any sign of disturbance: the surface brightness is quite regular and quasi-azimuthally symmetric within R_{500}. The offset between the X-ray surface brightness peak and the cluster brightest galaxy (Williamson et al. 2011, Fig. 19) is less than 5″.

To further examine the dynamical state of the cluster, in Fig. 3 we compare its scaled density profile to those of clusters in the local representative X-ray-selected sample REXCESS (Böhringer et al. 2007; Croston et al. 2008). The radii are scaled by R_{500} and the density by the mean within R_{500}. As extensively discussed by Pratt et al. (2009) and Arnaud et al. (2010), morphologically disturbed (i.e., merging) systems have systematically shallower density profiles than more relaxed cool core objects. This is illustrated in Fig. 3, where we indicate the scaled density profiles of the more relaxed cool core and the dynamically active merging clusters. The scaled density profile of PLCK G266.6−27.3 lies between the two classes, but with an indication of being closer to the relaxed rather than the merging systems. It is thus possible that PLCK G266.6−27.3 is a cool core object at $z \sim 1$. Such objects are expected to be rare (e.g., Vikhlinin et al. 2007; Santos et al. 2010), and no cluster at this redshift has yet been found to contain a resolved central temperature drop that would confirm the presence of a cool core. A deep exposure at Chandra spatial resolution is needed to check this hypothesis.

It is worth emphasising the similarity beyond the core of the density profile of this cluster with respect to REXCESS systems. This is the first piece of evidence for a similarity of shape up to redshifts as high as $z \sim 1$.

5. Conclusion

PLCK G266.6−27.3 is the first blindly discovered Planck cluster of galaxies at $z \sim 1$. It has been confirmed by XMM-Newton in the framework of the on-going validation DDT observations. XMM-Newton data allowed us to measure the redshift with high accuracy ($z = 0.94 \pm 0.02$) and estimate the cluster mass to be $M_{500} = (7.8 \pm 0.8) \times 10^{14} M_\odot$. This XMM-Newton confirmation and redshift estimate is a clear demonstration of the capability of Planck for detecting high-z, high-mass clusters.

PLCK G266.6−27.3 is an exceptional system, both in terms of its luminosity and its estimated mass. Furthermore, unlike other high-redshift clusters, it is likely to be a relaxed system, potentially allowing accurate hydrostatic mass measurements. It is thus a perfect target for deep multi-wavelength follow-up to address such important cosmological issues as the evolution of dark matter profiles, the evolution of the mass-Y_X relation, gas clumping, and the bias between X-ray and lensing mass estimates at such high redshift.

Acknowledgements. The Planck Collaboration thanks Norbert Schartel for his support of the validation process and for granting discretionary time for the observation of Planck cluster candidates. The present work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). This research has made use of the following databases: SIMBAD, operated at the CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by the Laboratoire d’Astrophysique de Toulouse (LAT), under contract with the Centre National d’Études Spatiales (CNES); and the SZ repository operated by IAS Data and Operation Center (IDOC) under contract with CNES. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AOF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCUK (UK); SFI (Ireland); FCT/MCTES (Portugal); and DEIBA (EU).

References
